Complex Analysis

from the context of the course MTH 425: Complex Analysis

Kaedon Cleland-Host

April 13, 2023

Contents

1 Fundamentals 2
1.1 Complex Numbers 2
1.1.0 Euler's Formula 2
1.2 Functions 3
1.3 Differentiation 3
1.4 Harmonic Functions 3
1.5 Polynomials 3
1.6 Standard Functions 4
1.7 Integration 4
1.8 Interior and Exterior 5
1.9 Cauchy's Integral Formula 6
2 Complex Series 7
2.1 Power Series 7

Chapter 1

Fundamentals

1.1 Complex Numbers

Definition 1.1.1. The set of complex numbers \mathbb{C} is defined where $i^{2}=-1$ by

$$
\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}
$$

Definition 1.1.2. The complex conjugate of a complex number $a+b i=z \in \mathbb{C}$ denoted \bar{z} is defined as $\bar{z}=a-b i$.
Definition 1.1.3. The norm of a complex number $z \in \mathbb{C}$ denoted $|z|$ is defined as $|z|=\sqrt{z \bar{z}}$.
Theorem 1.1.1. Euler's Formula states that for any real number $\varphi \in \mathbb{R}$,

$$
e^{i \phi}=\cos \phi+i \sin \phi
$$

Proposition 1.1.1. Any complex number $z \in \mathbb{C}$ can be represented in the form $z=r e^{i \phi}$.
Definition 1.1.4. The nth roots of unity are the complex numbers $e^{i 2 \pi k / n}$ for $k=0,1, \ldots, n-1$.
Definition 1.1.5. A field R is a set with two laws of composition denoted + and \times that satisfy the following axioms:

- Identity \exists elements denoted $0,1 \in R$ such that $1 \times a=a$ and $0+a=a, \forall a \in R$.
- Additive Inverse For all $a \in R$, there exists an element $-a \in R$ such that $-a+a=0$.
- Multiplicative Inverse For all nonzero $a \in F$, there exists an element $a^{-1} \in R$ such that $a \times a^{-1}=1$.
- Associativity For all $a, b, c \in R, a \times(b \times c)=(a \times b) \times c$ and $a+(b+c)=(a+b)+c$.
- Commutativity For all $a, b \in R, a \times b=b \times a$ and $a+b=b+a$.
- Distributivity For all $a, b, c \in R, a \times(b+c)=(a \times b)+(a \times c)$.

Proposition 1.1.2. The complex numbers \mathbb{C} is a field with multiplicative inverses $z^{-1}=\frac{\bar{z}}{|z|^{2}}$ for any $z \in \mathbb{C}$.
Proposition 1.1.3. \mathbb{R} is a subfield of \mathbb{C}.
Definition 1.1.6. A domain is an open and connected subset of \mathbb{C}.
Definition 1.1.7. An element $z \in \mathbb{C}$ is a limit point of a subset $S \subset \mathbb{C}$ if every neighborhood of z intersects $S-\{z\}$.
Definition 1.1.8. A subset $S \subset \mathbb{C}$ is

- open if for every $s \in S$ there is a neighborhood of s that is a subset of S.
- closed if every limit point of S is in S.
- bounded if for some real number $M \in \mathbb{R}$ and a point $z \in \mathbb{C}, S \subseteq B(x, M)$.
- dense in $X \subset \mathbb{C}$ if any $x \in X$ is a limit point of S.

1.2 Functions

Definition 1.2.1. A function $f: A \rightarrow B$ is a subset of $X \times Y$ such that $\forall x \in X, \exists$ exactly one element $y \in B,(x, y) \in f$.
Definition 1.2.2. The domain of a function $f: A \rightarrow B$ is $\{a \in A: \exists b \in B$ such that $(a, b) \in f\}$.
Definition 1.2.3. The range of a function $f: A \rightarrow B$ is $\{b \in B: \exists a \in A$ such that $(a, b) \in f\}$.
Definition 1.2.4. A function is a injective denoted $f: A \hookrightarrow B$ iff $f(x)=f(u) \Rightarrow x=y$.
Definition 1.2.5. A function is a surjection denoted $f: A \rightarrow B$ iff the range of f equals B.
Definition 1.2.6. A function is a bijection denoted $f: A \hookrightarrow B$ iff it is both an injection and a surjection.
Definition 1.2.7. The limit of a function f as $z \rightarrow z_{0}$ denoted $\lim _{z \rightarrow z_{0}} f(z)=\omega_{0} \in \mathbb{C}$ iff $\forall \varepsilon>0 \exists \delta>0$ such that $0 \leq\left|x-x_{0}\right|<\delta \Rightarrow\left|f(z)-\omega_{0}\right|<\varepsilon$.
Definition 1.2.8. A function is continuous at $z_{0} \in \mathbb{C}$ iff $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$.
Definition 1.2.9. A function is continuous iff it is continuous at all points.

1.3 Differentiation

Definition 1.3.1. The complex derivative of a function f denoted $\frac{\partial}{\partial z} f(z)$ is defined

$$
\frac{\partial}{\partial z} f(z)=\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}
$$

Definition 1.3.2. A function is differentiable iff the derivative exists for all $z \in \mathbb{C}$.
Proposition 1.3.1. If $f(x+i y)=u(x+i y)+i v(x+i y)$ is differentiable if and only if the partial derivatives exist and the Cauchy-Riemann equations hold

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Definition 1.3.3. A function f is analytic on an open set $S \subset \mathbb{C}$ iff f is differentiable at every point $s \in S$.
Definition 1.3.4. A set S is connected iff any two points $a, b \in S$ there exists a continuous function $p:[0,1] \rightarrow S$ such that $p(0)=a$ and $p(1)=b$.
Theorem 1.3.1. If f is analytic on $S \subset \mathbb{C}$ and $\frac{\partial}{\partial z} f(z)=0$ for all $z \in S$, then for some constant $a \in \mathbb{C}, f(z)=a$ for all $z \in S$.

1.4 Harmonic Functions

Definition 1.4.1. A function $f: D \rightarrow \mathbb{R}^{2}$ is harmonic where $D \subset \mathbb{R}^{2}$ iff f is C^{2} continuous and

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

Theorem 1.4.1. A function $f=u+i v: \mathbb{C} \rightarrow \mathbb{C}$ is analytic on $D \subset \mathbb{C}$ and u, v are C^{2} continuous on D if and only if u and v are harmonic on D.
Definition 1.4.2. Two functions $u, v: \mathbb{C} \rightarrow \mathbb{R}$ are harmonic conjugates on $D \subset \mathbb{C}$ iff $f=u+i v: \mathbb{C} \rightarrow \mathbb{C}$ is analytic on D and u, v are C^{2} continuous on D.

1.5 Polynomials

Definition 1.5.1. A degree \mathbf{n} polynomial is a function $p: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
p(z)=\sum_{m=0}^{n} a_{m} z^{m}
$$

Definition 1.5.2. A êxtbfrational function is a function $p / q: \mathbb{C} \rightarrow \mathbb{C}$ where p and q are polynomials defined by

$$
f(z)=\frac{p(z)}{q(z)}
$$

Definition 1.5.3. A function is λ-periodic on a subset of $S \subseteq \mathbb{C}$ iff

$$
f(z)=f(z+\lambda) \quad \forall z \in S
$$

Proposition 1.5.1. e^{z} is $2 \pi i$ periodic.

1.6 Standard Functions

Definition 1.6.1. The sin and cos functions $\sin , \cos : \mathbb{C} \rightarrow \mathbb{C}$ are defined

$$
\begin{aligned}
& \cos (z)=\frac{e^{i z}+e^{-i z}}{2} \\
& \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
\end{aligned}
$$

Proposition 1.6.1. The sin and cos functions are 2π-periodic.
Definition 1.6.2. The argument function $\arg _{\tau}: \mathbb{C} \rightarrow(\tau, \tau+2 \pi]$ is defined for $z \in \mathbb{C}$ by $z=|z| e^{i \arg _{\tau}(z)}$
Definition 1.6.3. The standard argument function $\operatorname{Arg}: \mathbb{C} \rightarrow(-\pi, \pi]$ is defined as $\operatorname{Arg}(z)=\arg _{-\pi}(z)$.
Definition 1.6.4. The logarithm function $\log _{\tau}: \mathbb{C}-\{0\} \rightarrow \mathbb{C}$ is defined as $\log (z)=\ln |z|+i \arg _{\tau}(z)$.
Definition 1.6.5. The standard logarithm function $\log : \mathbb{C}-\{0\} \rightarrow \mathbb{C}$ is defined as $\log (z)=\ln |z|+i \operatorname{Arg}(z)$.
Definition 1.6.6. The exponential function $\wedge: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is defined for $(\alpha, \beta) \in \mathbb{C}^{2}$ as

$$
\alpha^{\beta}=e^{\beta \log (\alpha)}=e^{\beta(\log |\alpha|+i \arg (\alpha))}=e^{\beta(\log |\alpha|+i \arg (\alpha)+i 2 \pi k)}
$$

Definition 1.6.7. The standard exponential function $\wedge: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is defined for $(\alpha, \beta) \in \mathbb{C}^{2}$ as

$$
\alpha^{\beta}=e^{\beta \log (\alpha)}=e^{\beta(\log |\alpha|+i \arg (\alpha))}=e^{\beta(\log |\alpha|+i \operatorname{Arg}(\alpha)+i 2 \pi k)}
$$

Proposition 1.6.2. For any $\log _{\tau}: \mathbb{C}-\{0\} \rightarrow \mathbb{C}$ and any $z_{1}, z_{2} \in \mathbb{C}$,

$$
\begin{gathered}
\log _{\tau}\left(z_{1} z_{2}\right)=\log _{\tau}\left(z_{1}\right)+\log _{\tau}\left(z_{2}\right) \\
\log _{\tau}\left(z_{1} / z_{2}\right)=\log _{\tau}\left(z_{1}\right)-\log _{\tau}\left(z_{2}\right)
\end{gathered}
$$

Theorem 1.6.1. The standard logarithm function is analytic on $\mathbb{C}-(-\infty, 0]$ and $\frac{\partial}{\partial z} \log (z)=\frac{1}{z}$.

1.7 Integration

Definition 1.7.1. The complex integral denoted $\int_{a}^{b} f(t) d t$ of a continuous complex function $f:[a, b] \rightarrow \mathbb{C}$ such that $f(t)=u(t)+i v(t)$ is defined

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

Theorem 1.7.1. The Fundamental Theorem of Calculus states that for any function $g:[a, b] \rightarrow \mathbb{C}$ if there exists $F:[a, b] \rightarrow \mathbb{C}$ such that $F^{\prime}(t)=f(t), \forall t \in[a, b]$, then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

Definition 1.7.2. A smooth curve is a function $f:[a, b] \rightarrow \mathbb{C}, f=u(t)+i v(t)$ iff

- f has a continuous derivative.
- f^{\prime} is non-zero.

Definition 1.7.3. A smooth closed curve is a smooth curve $f:[a, b] \rightarrow \mathbb{C}$ such that

- $f(a)=f(b), f^{\prime}(a)=f^{\prime}(b)$.
- f is bijective on $[a, b)$.

Definition 1.7.4. A directed smooth curve is a smooth curve $f:[a, b] \rightarrow \mathbb{C}$ where a is declared as the initial point.
Definition 1.7.5. A directed smooth closed curve is a smooth curve that is both directed and closed.
Definition 1.7.6. The integral over a curve γ with any parameterization $g_{\gamma}:[a, b] \rightarrow \mathbb{C}$ that is a directed smooth curve of a functoin $f: \mathbb{C} \rightarrow \mathbb{C}$ is defined

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(g(t)) g^{\prime}(t) d t
$$

Definition 1.7.7. A contour is a finite collection of smooth curves connected at initial and final points.
Definition 1.7.8. A loop contour is a contour $\Gamma:[a, b] \rightarrow \mathbb{C}$ such that $\Gamma(a)=\Gamma(b)$.
Definition 1.7.9. A simple contour is a contour $\Gamma:[a, b] \rightarrow \mathbb{C}$ where there does not exist an element $\left(t_{1}, t_{2}\right) \in[a, b] \times(a, b)$ such that $\Gamma\left(t_{1}\right)=\Gamma\left(t_{2}\right)$.

Definition 1.7.10. The integral over a contour γ with component curves $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ of a function $f: \mathbb{C} \rightarrow \mathbb{C}$ is defined

$$
\int_{\Gamma} f(z) d z=\sum_{i=1}^{n} \int_{\gamma_{i}} f(z) d z
$$

Theorem 1.7.2. Let D be a domain. If continuous function $f: D \rightarrow \mathbb{C}$ has an anti derivative F, then for any $z_{I}, z_{F} \in D$ and any contour $\Gamma \subset D$ with initial point z_{I} and final point z_{F} the integral

$$
\int_{\Gamma} f(z) d z=F\left(z_{F}\right)-F\left(z_{I}\right)
$$

Corollary 1.7.2.1. Integrals of closed contours on continuous functions with anti derivatives are zero.
Theorem 1.7.3. Let f be continuous in a domain D, the following are equivalent

- f has an anti-derivative.
- Integrals of closed contours are zero.
- Contours that share initial and final points are equivalent.

1.8 Interior and Exterior

Definition 1.8.1. The interior of a simple closed contour Γ is the bounded subset $\operatorname{Int}(\Gamma) \subset \mathbb{C}$ separated from $\mathbb{C}-\operatorname{Int}(\Gamma)$ by the contour Γ.

Definition 1.8.2. The exterior of a simple closed contour Γ is the unbounded subset $\operatorname{Ext}(\Gamma) \subset \mathbb{C}$ separated from $\mathbb{C}-\operatorname{Ext}(\Gamma)$ by the contour Γ.

Theorem 1.8.1. The Jordan Curve Theorem states that any simple closed contour Γ separates \mathbb{C} into an interior and exterior.

Definition 1.8.3. A contour Γ is positively oriented iff the interior is to the left of a point traveling along Γ.
Definition 1.8.4. A contour Γ is negatively oriented iff the interior is to the right of a point traveling along Γ.
Definition 1.8.5. A domain D is simply connected $\operatorname{iff} \forall \Gamma \subset D$ if Γ is a simple closed contour then $\operatorname{Int}(\Gamma) \subset D$.
Theorem 1.8.2. Let D be a simply connected domain, Γ be any simple loop contour, and f be any analytic function on D, then

$$
\oint_{\Gamma} f(z) d z=0
$$

Definition 1.8.6. A contour $\Gamma_{0} \subset D$ can be continuously deformed to another contour $\Gamma_{1} \subset D$ iff there exists a continuous function $z:[0,1] \times[0,1] \rightarrow D$ such that

$$
z(0, t)=\Gamma_{0}(t), \text { and } z(1, t)=\Gamma_{1}(t)
$$

Theorem 1.8.3. For D domain, let $\Gamma_{0}, \Gamma_{1} \subset D$ be closed contours such that Γ_{0} can be continuously transformed onto Γ_{1} and f be an analytic function in D then

$$
\oint_{\Gamma_{0}} f(z) d z=\oint_{\Gamma_{1}} f(z) d z
$$

1.9 Cauchy's Integral Formula

Theorem 1.9.1. Cauchy's Integral Formula states that for any analytic function f on a simply connected domain D, if $\Gamma \subset D$ is a simple closed positively oriented contour, then for any $z_{0} \subset \operatorname{Int}(\Gamma)$,

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi} \oint_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

Theorem 1.9.2. Morera's Theorem states that if f is continuous in a domain D such that

$$
\int_{\Gamma} f(z) d z=0, \quad \forall \Gamma \text { loops in } D
$$

then f is analytic in D.
Proposition 1.9.1. Cauchy estimates states for f analytic on $B_{R}\left(z_{0}\right)$,

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!}{R^{n}} \max _{z \in B_{R}\left(z_{0}\right)}|f(z)|
$$

Theorem 1.9.3. If f is bounded and holomorphic on all of \mathbb{C}, then f is constant.
Theorem 1.9.4. The Fundamental Theorem of Algebra states that every non-constant polynomial with complex coefficients has at least one zero.

Chapter 2

Complex Series

2.1 Power Series

Theorem 2.1.1. Consider the power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

there exists $R \geq 0$ such that

1. If $R>0$ then the series converges to an analytic function for $\left|z-z_{0}\right|<R$.
2. The series diverges for $\left|z-z_{0}\right|>R$.
3. $f^{\prime}(z)=\sum_{n=1}^{\infty} a_{n} n\left(z-z_{0}\right)^{n-1}$ for $\left|z-z_{0}\right|<R$
4. If $\Gamma \subset B_{R}\left(z_{0}\right)$ is a contour then

$$
\int_{\Gamma} f(z) d z=\sum_{n=0}^{\infty} a_{n} \int_{\Gamma}\left(z-z_{0}\right)^{n} d z
$$

Definition 2.1.1. The radius of convergence of a power series is the real number $R \geq 0$ such that the properties in the previous theorem hold.

Theorem 2.1.2. Taylors Theorem states that for any analytic function f on domain D and $z_{0} \in D$ for

$$
a_{n}=\frac{f^{(n)\left(z_{0}\right)}}{n!}=\frac{1}{n \pi i} \int_{C_{R / 2}\left(z_{0}\right)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

the series $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges to $f(z)$ for any $z \in B_{R}\left(z_{0}\right) \subset D$.
Theorem 2.1.3. Let f be analytic on $A=\left\{z\left|0<r<\left|z-z_{0}\right|\right\}\right.$ then $\forall z \in A$

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n}
$$

for $a_{n}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\omega)}{\left(\omega-z_{0}\right)^{n+1} d \omega}$ for $n=0,1,2, \ldots$ and where $\Gamma \subset A$ is any closed simple positively oriented contour with $z_{0} \in \operatorname{Int}(\Gamma)$.

Theorem 2.1.4. A series of the form

$$
\sum_{n=1}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n}
$$

that converges on A defines an analytic function on A.

