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Chapter 1

Fundamentals

1.1 Complex Numbers

Definition 1.1.1. The set of complex numbers C is defined where i2 = −1 by

C = {a+ bi : a, b ∈ R}

Definition 1.1.2. The complex conjugate of a complex number a+ bi = z ∈ C denoted z is defined as z = a− bi.

Definition 1.1.3. The norm of a complex number z ∈ C denoted |z| is defined as |z| =
√
zz.

Theorem 1.1.1. Euler’s Formula states that for any real number φ ∈ R,

eiϕ = cosϕ+ i sinϕ

Proposition 1.1.1. Any complex number z ∈ C can be represented in the form z = reiϕ.

Definition 1.1.4. The nth roots of unity are the complex numbers ei2πk/n for k = 0, 1, . . . , n− 1.

Definition 1.1.5. A field R is a set with two laws of composition denoted + and × that satisfy the following axioms:

� Identity ∃ elements denoted 0, 1 ∈ R such that 1× a = a and 0 + a = a, ∀ a ∈ R.

� Additive Inverse For all a ∈ R, there exists an element −a ∈ R such that −a+ a = 0.

� Multiplicative Inverse For all nonzero a ∈ F , there exists an element a−1 ∈ R such that a× a−1 = 1.

� Associativity For all a, b, c ∈ R, a× (b× c) = (a× b)× c and a+ (b+ c) = (a+ b) + c.

� Commutativity For all a, b ∈ R, a× b = b× a and a+ b = b+ a.

� Distributivity For all a, b, c ∈ R, a× (b+ c) = (a× b) + (a× c).

Proposition 1.1.2. The complex numbers C is a field with multiplicative inverses z−1 = z
|z|2 for any z ∈ C.

Proposition 1.1.3. R is a subfield of C.

Definition 1.1.6. A domain is an open and connected subset of C.

Definition 1.1.7. An element z ∈ C is a limit point of a subset S ⊂ C if every neighborhood of z intersects S − {z}.

Definition 1.1.8. A subset S ⊂ C is

� open if for every s ∈ S there is a neighborhood of s that is a subset of S.

� closed if every limit point of S is in S.

� bounded if for some real number M ∈ R and a point z ∈ C, S ⊆ B(x,M).

� dense in X ⊂ C if any x ∈ X is a limit point of S.
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1.2 Functions

Definition 1.2.1. A function f : A → B is a subset of X × Y such that ∀x ∈ X, ∃ exactly one element y ∈ B, (x, y) ∈ f .

Definition 1.2.2. The domain of a function f : A → B is {a ∈ A : ∃b ∈ B such that (a, b) ∈ f}.
Definition 1.2.3. The range of a function f : A → B is {b ∈ B : ∃a ∈ A such that (a, b) ∈ f}.
Definition 1.2.4. A function is a injective denoted f : A ↪→ B iff f(x) = f(u) ⇒ x = y.

Definition 1.2.5. A function is a surjection denoted f : A ↠ B iff the range of f equals B.

Definition 1.2.6. A function is a bijection denoted f : A ↪→→ B iff it is both an injection and a surjection.

Definition 1.2.7. The limit of a function f as z → z0 denoted limz→z0 f(z) = ω0 ∈ C iff ∀ ε > 0 ∃δ > 0 such that
0 ≤ |x− x0| < δ ⇒ |f(z)− ω0| < ε.

Definition 1.2.8. A function is continuous at z0 ∈ C iff limz→z0 f(z) = f(z0).

Definition 1.2.9. A function is continuous iff it is continuous at all points.

1.3 Differentiation

Definition 1.3.1. The complex derivative of a function f denoted ∂
∂z f(z) is defined

∂

∂z
f(z) = lim

h→0

f(z + h)− f(z)

h

Definition 1.3.2. A function is differentiable iff the derivative exists for all z ∈ C.
Proposition 1.3.1. If f(x+ iy) = u(x+ iy) + iv(x+ iy) is differentiable if and only if the partial derivatives exist and the
Cauchy-Riemann equations hold

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

Definition 1.3.3. A function f is analytic on an open set S ⊂ C iff f is differentiable at every point s ∈ S.

Definition 1.3.4. A set S is connected iff any two points a, b ∈ S there exists a continuous function p : [0, 1] → S such
that p(0) = a and p(1) = b.

Theorem 1.3.1. If f is analytic on S ⊂ C and ∂
∂z f(z) = 0 for all z ∈ S, then for some constant a ∈ C, f(z) = a for all

z ∈ S.

1.4 Harmonic Functions

Definition 1.4.1. A function f : D → R2 is harmonic where D ⊂ R2 iff f is C2 continuous and

∂2f

∂x2
+

∂2f

∂y2
= 0

Theorem 1.4.1. A function f = u+ iv : C → C is analytic on D ⊂ C and u, v are C2 continuous on D if and only if u and
v are harmonic on D.

Definition 1.4.2. Two functions u, v : C → R are harmonic conjugates on D ⊂ C iff f = u + iv : C → C is analytic on
D and u, v are C2 continuous on D.

1.5 Polynomials

Definition 1.5.1. A degree n polynomial is a function p : C → C defined by

p(z) =

n∑
m=0

amzm

Definition 1.5.2. A �extbfrational function is a function p/q : C → C where p and q are polynomials defined by

f(z) =
p(z)

q(z)

Definition 1.5.3. A function is λ-periodic on a subset of S ⊆ C iff

f(z) = f(z + λ) ∀z ∈ S

Proposition 1.5.1. ez is 2πi periodic.
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1.6 Standard Functions

Definition 1.6.1. The sin and cos functions sin, cos : C → C are defined

cos(z) =
eiz + e−iz

2

sin(z) =
eiz − e−iz

2i

Proposition 1.6.1. The sin and cos functions are 2π-periodic.

Definition 1.6.2. The argument function argτ : C → (τ, τ + 2π] is defined for z ∈ C by z = |z|eiargτ (z)

Definition 1.6.3. The standard argument function Arg : C → (−π, π] is defined as Arg(z) = arg−π(z).

Definition 1.6.4. The logarithm function logτ : C− {0} → C is defined as log(z) = ln |z|+ iargτ (z).

Definition 1.6.5. The standard logarithm function Log : C− {0} → C is defined as Log(z) = ln |z|+ iArg(z).

Definition 1.6.6. The exponential function ∧ : C2 → C is defined for (α, β) ∈ C2 as

αβ = eβ log(α) = eβ(log|α|+i arg(α)) = eβ(log|α|+iarg(α)+i2πk)

Definition 1.6.7. The standard exponential function ∧ : C2 → C is defined for (α, β) ∈ C2 as

αβ = eβ log(α) = eβ(Log|α|+i arg(α)) = eβ(Log|α|+iArg(α)+i2πk)

Proposition 1.6.2. For any logτ : C− {0} → C and any z1, z2 ∈ C,

logτ (z1z2) = logτ (z1) + logτ (z2)

logτ (z1/z2) = logτ (z1)− logτ (z2)

Theorem 1.6.1. The standard logarithm function is analytic on C− (−∞, 0] and ∂
∂zLog(z) =

1
z .

1.7 Integration

Definition 1.7.1. The complex integral denoted
∫ b

a
f(t)dt of a continuous complex function f : [a, b] → C such that

f(t) = u(t) + iv(t) is defined ∫ b

a

f(t)dt =

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt

Theorem 1.7.1. The Fundamental Theorem of Calculus states that for any function g : [a, b] → C if there exists
F : [a, b] → C such that F ′(t) = f(t), ∀t ∈ [a, b], then∫ b

a

f(t)dt = F (b)− F (a)

Definition 1.7.2. A smooth curve is a function f : [a, b] → C, f = u(t) + iv(t) iff

� f has a continuous derivative.

� f ′ is non-zero.

Definition 1.7.3. A smooth closed curve is a smooth curve f : [a, b] → C such that

� f(a) = f(b), f ′(a) = f ′(b).

� f is bijective on [a, b).

Definition 1.7.4. A directed smooth curve is a smooth curve f : [a, b] → C where a is declared as the initial point.

Definition 1.7.5. A directed smooth closed curve is a smooth curve that is both directed and closed.

Definition 1.7.6. The integral over a curve γ with any parameterization gγ : [a, b] → C that is a directed smooth curve
of a functoin f : C → C is defined ∫

γ

f(z)dz =

∫ b

a

f(g(t))g′(t)dt
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Definition 1.7.7. A contour is a finite collection of smooth curves connected at initial and final points.

Definition 1.7.8. A loop contour is a contour Γ : [a, b] → C such that Γ(a) = Γ(b).

Definition 1.7.9. A simple contour is a contour Γ : [a, b] → C where there does not exist an element (t1, t2) ∈ [a, b]× (a, b)
such that Γ(t1) = Γ(t2).

Definition 1.7.10. The integral over a contour γ with component curves {γ1, . . . , γn} of a function f : C → C is defined∫
Γ

f(z)dz =

n∑
i=1

∫
γi

f(z)dz

Theorem 1.7.2. Let D be a domain. If continuous function f : D → C has an anti derivative F , then for any zI , zF ∈ D
and any contour Γ ⊂ D with initial point zI and final point zF the integral∫

Γ

f(z)dz = F (zF )− F (zI)

Corollary 1.7.2.1. Integrals of closed contours on continuous functions with anti derivatives are zero.

Theorem 1.7.3. Let f be continuous in a domain D, the following are equivalent

� f has an anti-derivative.

� Integrals of closed contours are zero.

� Contours that share initial and final points are equivalent.

1.8 Interior and Exterior

Definition 1.8.1. The interior of a simple closed contour Γ is the bounded subset Int(Γ) ⊂ C separated from C − Int(Γ)
by the contour Γ.

Definition 1.8.2. The exterior of a simple closed contour Γ is the unbounded subset Ext(Γ) ⊂ C separated from C−Ext(Γ)
by the contour Γ.

Theorem 1.8.1. The Jordan Curve Theorem states that any simple closed contour Γ separates C into an interior and
exterior.

Definition 1.8.3. A contour Γ is positively oriented iff the interior is to the left of a point traveling along Γ.

Definition 1.8.4. A contour Γ is negatively oriented iff the interior is to the right of a point traveling along Γ.

Definition 1.8.5. A domain D is simply connected iff ∀Γ ⊂ D if Γ is a simple closed contour then Int(Γ) ⊂ D.

Theorem 1.8.2. Let D be a simply connected domain, Γ be any simple loop contour, and f be any analytic function on D,
then ∮

Γ

f(z)dz = 0

Definition 1.8.6. A contour Γ0 ⊂ D can be continuously deformed to another contour Γ1 ⊂ D iff there exists a
continuous function z : [0, 1]× [0, 1] → D such that

z(0, t) = Γ0(t), andz(1, t) = Γ1(t)

Theorem 1.8.3. For D domain, let Γ0,Γ1 ⊂ D be closed contours such that Γ0 can be continuously transformed onto Γ1

and f be an analytic function in D then ∮
Γ0

f(z)dz =

∮
Γ1

f(z)dz
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1.9 Cauchy’s Integral Formula

Theorem 1.9.1. Cauchy’s Integral Formula states that for any analytic function f on a simply connected domain D, if
Γ ⊂ D is a simple closed positively oriented contour, then for any z0 ⊂ Int(Γ),

f (n)(z0) =
n!

2π

∮
Γ

f(z)

(z − z0)n+1
dz

Theorem 1.9.2. Morera’s Theorem states that if f is continuous in a domain D such that∫
Γ

f(z)dz = 0, ∀Γ loops in D

then f is analytic in D.

Proposition 1.9.1. Cauchy estimates states for f analytic on BR(z0),

|f (n)(z0)| ≤
n!

Rn
max

z∈BR(z0)
|f(z)|

Theorem 1.9.3. If f is bounded and holomorphic on all of C, then f is constant.

Theorem 1.9.4. The Fundamental Theorem of Algebra states that every non-constant polynomial with complex
coefficients has at least one zero.
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Chapter 2

Complex Series

2.1 Power Series

Theorem 2.1.1. Consider the power series

f(z) =

∞∑
n=0

an(z − z0)
n

there exists R ≥ 0 such that

1. If R > 0 then the series converges to an analytic function for |z − z0| < R.

2. The series diverges for |z − z0| > R.

3. f ′(z) =
∑∞

n=1 ann(z − z0)
n−1 for |z − z0| < R

4. If Γ ⊂ BR(z0) is a contour then ∫
Γ

f(z)dz =

∞∑
n=0

an

∫
Γ

(z − z0)
ndz

Definition 2.1.1. The radius of convergence of a power series is the real number R ≥ 0 such that the properties in the
previous theorem hold.

Theorem 2.1.2. Taylors Theorem states that for any analytic function f on domain D and z0 ∈ D for

an =
f (n)(z0)

n!
=

1

nπi

∫
CR/2(z0)

f(z)

(z − z0)n+1
dz

the series f(z) =
∑∞

n=0 an(z − z0)
n converges to f(z) for any z ∈ BR(z0) ⊂ D.

Theorem 2.1.3. Let f be analytic on A = {z|0 < r < |z − z0|} then ∀z ∈ A

f(z) =

∞∑
n=0

an(z − z0)
n +

∞∑
n=1

a−n(z − z0)
−n

for an = 1
2πi

∫
Γ

f(ω)
(ω−z0)n+1dω for n = 0, 1, 2, . . . and where Γ ⊂ A is any closed simple positively oriented contour with

z0 ∈ Int(Γ).

Theorem 2.1.4. A series of the form
∞∑

n=1

a−n(z − z0)
−n

that converges on A defines an analytic function on A.
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