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0.1 The SI System

In physics it’s often important to have precisely defined units for the purposes of making very accurate measurements or
simply having a coherent unit system. It’s possible to derive all necessary units from five measurements of length, mass,
time, current, and temperature. The standard SI units for these properties are listed bellow:

Type Unit Definition
Length Meter(m) Length of distance light in a vacuum travels in 1

299792458 seconds
Mass Kilogram(kg) Defined by fixing the Planck’s constant h = 6.62607015× 10−34kg m2s−1

Time Second(s) Defined by fixing the ground-state hyperfine transition frequency of the caesium-133
atom, to be 9192631770s−1

Current Ampere(A) Defined by fixing the charge of an electron as 1.602176634× 10−19A · s
Temperature Kelvin(K) Defined by fixing the value of the Boltzmann constant k to 1.380649× 10−23kg ·m2s−2K−1

Common prefixes are listed bellow:
Prefix Symbol Definition
mega M 106

kilo k 103

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

Additionally, the following are defined constants:
Symbol Definition

ℏ ℏ = h
2π ≈ 1.0546× 10−34kg m2s−1
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0.2 Why Study Condensed Matter

Condensed matter physics is the most broad field of physics that has a large overlap with other fields such as atomic physics,
quantum physics, chemistry, and biology. Condensed matter physics describes anything that is ”condensed” this includes
any solid material, such as metals, glass, wood and electronics. As such it is very important in our world. Condensed
matter is simultaneously very fundamental describing microscopic sources for material properties such as superconductivity,
charge density waves, topological insulators. These phenomenon can’t be described by reductionism and many properties
only emerge when you consider larger systems that cannot be solved using fundamental laws alone.
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Chapter 1

Atoms and Molecules

1.1 Hydrogen Like Systems

Many systems in condensed matter are similar to the hydrogen atom system and so it is often useful to use the solutions to
the basic hydrogen atom Hamiltonian to model these systems.

Definition 1.1.1. The simple hydrogen atom Hamiltonian is given by

H =
P 2
n

2mn︸ ︷︷ ︸
Nucleus

Kinetic Energy

+
P 2
n

2mn︸ ︷︷ ︸
Electron

Kinetic Energy

− Ze2

4πε0|x⃗e − x⃗n|︸ ︷︷ ︸
Electrostatic
Potential

(1.1.1)

This simplified Hamiltonian ignores relativity, spin, and magnetism.

Definition 1.1.2. Center of mass coordinates for the hydrogen atom are defined by

X⃗ =
mex⃗e +mnx⃗n
me +mn

center of mass

r⃗ = x⃗e − x⃗n relative coordinate

(1.1.2)

Corollary 1.1.3. The simple hydrogen atom Hamiltonian in center of mass coordinates is

H = − ℏ
2(me +mn)

∇2
X︸ ︷︷ ︸

Hk

− ℏ2

2µ
∇2

r −
Ze2

4πε0|r⃗|︸ ︷︷ ︸
Hr

(1.1.3)

Proposition 1.1.4. The Hamiltonians Hk and Hr are compatible observables.

[Hk,Hr] = 0, [Hk,H] = 0, [Hr,H] = 0 (1.1.4)

Proposition 1.1.5. The Hamiltonian Hr can be further separated in terms of radial and angular dependence.

Hr =
ℏ2L2

2µ|r⃗|2︸ ︷︷ ︸
Tangential
Kinetic
Energy

− ℏ
2µ

P 2
r

ℏ2︸ ︷︷ ︸
Radial
Kinetic
Energy

− Ze2

4πε0|r⃗|︸ ︷︷ ︸
Electrostatic
Potential

(1.1.5)

The solution to the Hamiltonian Hr can be written in terms of independent radial and angular components.

n = 1, 2, 3, 4, 5, . . .

ℓ = 0, 1, 2, 3, . . . , n− 1

mℓ = −ℓ,−ℓ+ 1, . . . ,−1, 0, 1, . . . , ℓ− 1, ℓ

(1.1.6)

ψnℓm(r, θ, ϕ) = U ℓ
n(r)Y

m
ℓ (θ, ϕ) (1.1.7)

Result 1.1.8. For the solution to the hydrogen atom ψnℓm(r, θ, ϕ), the following eigenvalue equations hold:

Hψnℓm(r, θ, ϕ) = −ZRyd
n2

ψnℓm(r, θ, ϕ) (1.1.8)

L2ψnℓm(r, θ, ϕ) = ℓ(ℓ+ 1)ℏ2ψnℓm(r, θ, ϕ) (1.1.9)

Lzψnℓm(r, θ, ϕ) = mℏψnℓm(r, θ, ϕ) (1.1.10)
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Definition 1.1.11. The Bohr radius is the average radius for the first energy level of the hydrogen atom given by

a0 =
4πε0ℏ2

µZe2
(1.1.11)

Definition 1.1.12. The Rydberg constant is the first energy level of hydrogen given by

Ryd =
ℏ2

2a20µ
=

e2

8πε0a0
(1.1.12)

Result 1.1.13. The energy eigenvalues of hydrogen are

En = −Z
2ℏ2

2a20µ

1

n2
= −Z

2Ryd

n2
(1.1.13)

1.1.14 Radial Component of Hydrogen

Definition 1.1.15. The Laguerre polynomials Lq(z) are polynomials of degree q defined by

Lq(z) = ez
dq

dxq
(zqe−z) (1.1.15)

Definition 1.1.16. The associated Laguerre polynomials are polynomials of degree q − p defined by

Lp
q(z) =

dp

dxp
Lq(x) (1.1.16)

Result 1.1.17. The radial component Y m
ℓ (θ, ϕ) has eigenvalues with eigenstates given by

U ℓ
n(r) = −

√√√√( 2Z

na0

(n− ℓ− 1)!

2n [(n+ ℓ)!]
3

)3

e−Zr/na0

(
2Zr

na0

)ℓ

L2ℓ+1
n+ℓ (2Zr/na0) (1.1.17)

1.1.18 Angular Component of Hydrogen

Definition 1.1.19. The Legendre polynmials denoted Pℓ(z) are polynomials of degree ℓ that appear in spherically
symmetric systems. They are defined with Rodrigues’ formula given by

Pℓ(z) =
1

2ℓℓ!

dℓ

dzℓ
(z2 − 1)ℓ (1.1.19)

Definition 1.1.20. The associated Legendre polynomials denoted Pm
ℓ (z) are polynomials calculated from the Legendre

polynomials. They are equivalently defined by the following formulas

Pm
ℓ (z) = (−1)m(1− z2)m/2 d

m

dzm
Pℓ(z)

=
(−1)m

2ℓℓ!
(1− z2)m/2 d

ℓ+m

dzℓ+m
(z2 − 1)ℓ

(1.1.20)

Result 1.1.21. The angular solution Y m
ℓ (θ, ϕ) has eigenvalues with eigenstates given by

Y m
ℓ (θ, ϕ) = (−1)m

√
2(ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eimϕ (1.1.21)
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1.2 Electron Configurations

Theorem 1.2.1. The Pauli exclusion principle states that two or more identical particles cannot occupy the same state.

Theorem 1.2.2. Hund’s rules state that electrons in a multi-electron atom fill shells according to the following rules.

1. Aligned Spins have lower energy. Maximize S =
∑

i si.

2. Minimized Electron Repulsions have lower energy. Maximize L =
∑

i ℓi.

3. Shells fill according to the following pattern, J = L− S when a shell is less that half full and J = L+ S when a shell
is more than half full.

‘

Definition 1.2.3. The spectroscopic notation for an electron configuration with total spin S, orbital angular momentum
L and total angular momentum J is

2S+1Lj (1.2.3)

where L is replaced with letters S, P,D, F for L = 0, 1, 2, 3

1.2.4 Magnetism

Definition 1.2.5. Diamagnetism occurs when the total magnetic moment of an individual atom arranges opposite the
direction of an applied field.

Definition 1.2.6. Paramagnetism occurs when the total magnetic moment of an individual atom arranges in the same
direction of an applied field.

Definition 1.2.7. For a single atom with Hamiltonian H0 and gyromagnetic factor g ≈ 2 in an applied magnetic field B⃗
such that ∇⃗ × A⃗ = B⃗ the Hamiltonian of a single atom is

H = H0 + µBB⃗(ℓ⃗+ gS⃗)︸ ︷︷ ︸
Paramagnetism

+
e2

2m
A⃗2︸ ︷︷ ︸

Diamagnetism

(1.2.7)

Proposition 1.2.8. For individual atoms, if J = 0 diamagnetism will occur otherwise if J ̸= 0 paramagnetism will occur.

Definition 1.2.9. Feromagnetism occurs when there is macroscopic permanent alignment of the magnetic moments of
multiple atoms.

Definition 1.2.10. Anti-feromagnetism occurs when there is macroscopic permanent anti-alignment of the magnetic
moments of multiple atoms.

1.3 Diatomic Molecules

Definition 1.3.1. The Hamiltonian for H2 is

H =
−ℏ
2mA

∇2
A − ℏ

2mB
∇2

B︸ ︷︷ ︸
Nuclei Kinetic Energy

− ℏ2

2me
∇2

1 −
ℏ2

2me
∇2

2︸ ︷︷ ︸
Electrons Kinetic Energy

− ZAe
2

4πε0r1A
− ZBe

2

4πε0r1B
− ZAe

2

4πε0r2A
− ZAe

2

4πε0r2B︸ ︷︷ ︸
Nuclear-Electron Electrostatic Potential

+
e2

4πε0r12︸ ︷︷ ︸
Nuclear-Nuclear
Electrostatic
Potential

ZAZBe
2

4πε0RAB︸ ︷︷ ︸
Electron-Electron

Electrostatic
Potential

(1.3.1)

Corollary 1.3.2. The Hamiltonian for H2 in Hartree units is

H =
1

2mA
∇2

A − 1

2mB
∇2

B − 1

2
∇2

1 −
1

2
∇2

2 −
ZA

r1A
− ZB

r1B
− ZA

r2A
− ZB

r2B
+

1

r12
+
ZAZB

RAB
(1.3.2)

Proposition 1.3.3. The H2 system cannot be solved due to the complexity of the electron-electron interaction.
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1.3.4 Linear Combinations of Atomic Orbitals

Definition 1.3.5. The linear combinations of atomic orbitals approximation is a method for approximating diatomic
molecules.

ψ ≈ 1√
2± 2s

(a(r⃗)± b(r⃗)) (1.3.5)

Definition 1.3.6. The symmetric bond written g (for garade) is the even linear combination

ψ+ =
1√

2 + 2s
(a(r⃗) + b(r⃗)) (1.3.6)

Definition 1.3.7. The antisymmetric bond written u (for ungarade) is the odd linear combination

ψ+ =
1√

2− 2s
(a(r⃗)− b(r⃗)) (1.3.7)

Proposition 1.3.8. Symmetric bonds have an increased probability of electrons near both nuclei with strong binding.
However, antisymmetric bonds have a decreased probability of electron near both nuclei with weak binding.

Definition 1.3.9. The molecular orbital diagram is a notation for linear combinations of atomic orbitals that represents
the atom orbitals and the molecular orbitals.

Definition 1.3.10. The bond order denoted B is defined as

B =
[# of bonding e−]− [# of antibonding e−]

2
(1.3.10)

Corollary 1.3.11. A molecule will be stable if and only if B > 0.

Definition 1.3.12. For the s shell there are two bonding shells: the s sigma bonding shell is σg and the s sigma
antibonding shell is σ∗

u. For the p shell there are 4 bonding shells: the p sigma bonding shell is σg, the p sigma
antibonding shell is σ∗

u, the p pi bonding shell is πu and the p pi antibonding shell is π∗
g .

Example. Consider diatomic Flourine: F2. Fourine has electron configuration 1s22s22p5, so the molecular orbital diagram is

This

Definition 1.3.13. The spectroscoptic notation or term symbols for a molecular electron configuration with total spin
S, orbital angular momentum L and total symmetry y is

2S+1Λy (1.3.13)

where Λ is replaced with symbols Σ,Π,∆,Φ for L = 0, 1, 2, 3 and g × g = g, u× u = g, g × u = u.

Definition 1.3.14. The Heitler-London Method is a method of approximating molecular wavefunctions that uses LCAO
but with the minor terms H−H+ terms dropped

ψHL = N(a(r1)b(r2) + b(r1)a(r2)) (1.3.14)
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Chapter 2

Crystal Structures

2.1 Lattice and Basis

Definition 2.1.1. A crystal is a periodic arrangement of atoms

Definition 2.1.2. A lattice is a set of points R defined as integer sums of primitive lattice vectors.

Definition 2.1.3. The primitive lattice vectors of a lattice is a set of vectors that forms an integer basis for a lattice.
Each primitive lattice vector must be integer linearly independent and the set of primitive lattices vectors must generate the
set of lattice points.

Definition 2.1.4. A set of vectors {v1,v2, . . . ,vn} is integer linearly independent iff there does not exists non-zero
integers z1, z2, . . . , xn ∈ Z such that

z1v1 + z2v2 + · · ·+ znvn = 0 (2.1.4)

Definition 2.1.5. A set of vectors {v1,v2, . . . ,vn} is generating iff for every lattice point r there exists unique integers
z1, z2, . . . , xn ∈ Z such that

z1v1 + z2v2 + · · ·+ znvn = R (2.1.5)

Theorem 2.1.6. The set of all possible lattices is classified by the following 14 Bravais lattices:

Proposition 2.1.7. A choice of lattice vectors is non unique.
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Definition 2.1.8. A basis is a set of vectors that when repeated for every lattice points uniquely reproduces the entire
lattice.

Theorem 2.1.9. Any crystal can be represented as a lattice and a basis.

Definition 2.1.10. A unit cell is a region of space which when repeated across a lattice completely reconstructs a crystal
structure with no overlapping points.

Definition 2.1.11. A primitive unit cell is a unit cell with only one lattice point.

Definition 2.1.12. The number of lattice points in a unit cell is determined by location of the points in the unit cell.
Corner points are 1/8, endpoints are 1/4, face point are 1/2, and points on in bulk of the cell are 1.

Definition 2.1.13. The coordination number is the number of neighbors for each point.

2.2 Reciprocal Space

Definition 2.2.1. The reciprocal lattice is the lattice of points G such that eiG·R = 1 for all R in the direct lattice.

Definition 2.2.2. The reciprocal lattice vectors are the set of vectors bi that generate the reciprocal lattice G.

bi = 2π
aj × ak

a1 · (a2 × a3)
, , i, j, k = 1, 2, 3; 2, 3, 1; 3, 1, 2 (2.2.2)

G = hb1 + kb2 + lb3, h, k, l ∈ Z (2.2.3)

for a 2d lattice the reciprocal lattice vectors b1 = (b1x, b1y) and b2 = (b2x, b2y) are given by

b1x =
2πa2y

a1xa2y − a1ya2x
, b1y =

−2πa2x
a1xa2y − a1ya2x

(2.2.4)

b2x =
−2πa1y

a1xa2y − a1ya2x
, b1y =

2πa1x
a1xa2y − a1ya2x

(2.2.5)

(2.2.6)

Definition 2.2.7. The miller indices denoted (hkl) of a reciprocal lattice point G are integers h, k, l ∈ Z such that

G = hb1 + kb2 + lb3 (2.2.7)

Remark. The reciprocal lattice of fcc is bcc.

Definition 2.2.8. A lattice plane is a plane containing at least 3 non-colinear lattices points.

Definition 2.2.9. A family of lattice planes is an infinite set of equally spaced parallel lattice planes such that all lattice
points are included in exactly one of the lattice planes.

Proposition 2.2.10. Every family of lattice planes is orthogonal to a reciprocal lattice vector a and the spacing between
lattice planes is

d =
2π

|amin|
(2.2.10)

where amin is the smallest reciprocal lattice vector in direction a.

Corollary 2.2.11. The distance between lattice planes in the family for a reciprocal lattice vector with miller indices (hkl)
is

d =
2π√

h2b1 + k2b2 + l2b3

(2.2.11)

Corollary 2.2.12. For a cubic cell the distance between lattice planes in the family for a reciprocal lattice vector with miller
indices (hkl) is

d =
2π√

h2 + k2 + l2
(2.2.12)

Proposition 2.2.13. MISSING PROP! Recall date: 2022-10-05. Using lecture notes from d2l. Prop about x,y,z intercepts
and lattice planes.

Definition 2.2.14. Two miller indices are equivalent iff the corresponding families of lattice planes are homeomorphic by
rotation.

Definition 2.2.15. The multiplicity of miller indices is the number of equivalent miller indices

Proposition 2.2.16. A set of lattice vectors is primitive if and only if the set of reciprocal lattice vectors is primitive.
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2.3 X-Ray Scattering

Definition 2.3.1. The electron density scattering model predicts the intensity of scattered light for the wave vector k
of incoming light, the wave vector k′ of scattered light in reciprocal space, and the scattering potential V (r) is direct space,
the indensity of scattered light Γ(k− k′) is given by

Γ(k− k′) =
2π

ℏ
|⟨k′|V (r) |k⟩|2 δ(E − E′) (2.3.1)

Result 2.3.2. Scattering amplitude from wave vector k of incoming light to wave vector k′ of scattered light in reciprocal
space is the Fourier transform of scattering potential V (r).

⟨k′|V (r) |k⟩ =
∫
e−ik′rV (r)eikrdr =

∫
e−i(k′−k)rV (r)dr = Ṽ (k− k′) (2.3.2)

Definition 2.3.3. Bragg’s condition for n ∈ N, wavelength λ, lattice spacing d and scattering angle θ is satisfied when

nλ = 2d sin θ (2.3.3)

Definition 2.3.4. The X-ray scattering potential V (r) is proportional to the density of electrons and is given by

V (r) =
∑
α

zαgα(r− rα) (2.3.4)

Theorem 2.3.5. When Bragg’s condition is satisfied the intensity IScattering of scattered light is proportional to

IScattering ∝ |Ṽ (k)|2 (2.3.5)

where Ṽ (k) is the fourier transform of the scatter potential V (r)

Definition 2.3.6. The atomic form factor fα(G) is defined as

fα(G) =

∫
reiG·rzαgα(r)d

3r (2.3.6)

Result 2.3.7. The the fourier transform of the scatter potential of miller indices (h, k, l) where [uα, vα, wα] are the positions
of atoms is

Ṽ (k) =
∑
α

eiπ(huα+kvα+lw+α)fα(h, k, l) (2.3.7)

Theorem 2.3.8. The the fourier transform of the scatter potential of miller indices (h, k, l) can be written in terms of the
basis and lattice vectors

Ṽ (k) =
∑
R

∑
x

fx(h, k, l)e
iG·(R+x) =

∑
R

eiG·R ·
∑
x

fx(h, k, l)e
iG·x (2.3.8)

where R are the lattice vectors and x are the basis vectors.

2.3.9 Experimental X-Ray Scattering

Definition 2.3.10. The single crystal X-ray diffraction experiment is an experiment where a single large crystal
sample is rotated relative to a beam of X-rays and a detector.

Definition 2.3.11. The powder X-ray diffraction experiment is an experiment where X-rays are diffracted through a
powdered sample of a crystal to generate diffraction rings on a detector screen.

Definition 2.3.12. Debye-Scherrer rings are the diffraction rings formed by X-ray diffraction through a powdered sample.

Definition 2.3.13. An X-ray tube is a device that uses excited electron states in copper to produce X-rays at λ = 1.5407Å.

Theorem 2.3.14. To experimental determine the crystal structure of a powdered samples we measure the angle of the rings
which is 2θ determined by Braggs condition:

d =
π

2 sin θ
(2.3.14)

The ratio between the lattice plane spacing can be used to determine the crystal structure.
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Chapter 3

Electrons in Crystals

3.1 Tight Binding Model

Definition 3.1.1. The 1D tight binding chain is a simple model of a chain of atoms where we assume that electrons can
only hop to the nearest neighbor atoms

H =
P 2

2m
+
∑
n

V (X−αn) (3.1.1)

⟨n|H |m⟩ = (Eatomic + V0)δn,m − t(δn,m+1 + δn,m−1), V0 = |m⟩
∑
n ̸=m

Vn |m⟩ (3.1.2)

where αn are the positions of atoms and t is the binding constant. This model assumes that the total wavefunction is simply
the sum of the individual wave functions for each atom

|ψ⟩ =
∑
n

|n⟩, ⟨n|m⟩ = δn,m (3.1.3)

Definition 3.1.4. A dispersion relation is the relation between energy and momentum in k-space. This is defined in
terms of the momentum basis states Φ(k).

Theorem 3.1.5. The dispersion relation for the tight binding model is

Φn(k) = e−ikna (3.1.5)

(Eatomic + V0)e
−ikna − t

(
e−ik(n+1)a + e−ik(n−1)a

)
= Ee−ikna (3.1.6)

E = ε0 − 2t cos(ka), ε0 = Eatomic + V0 (3.1.7)

3.2 Nearly Free Electron Model
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