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Chapter 1

Discrete Fourier Analysis

1.1 Complex Numbers

Definition 1.1.1. The set of complex numbers C is defined where i2 = −1 by

C = {a+ bi : a, b ∈ R}

Definition 1.1.2. The complex conjugate of a complex number a+ bi = z ∈ C denoted z is defined as z = a− bi.

Definition 1.1.3. The norm of a complex number z ∈ C denoted |z| is defined as |z| =
√
zz.

Theorem 1.1.1. Taylor’s Theorem states that any C∞ continuous function f : C → C can be represented as a Taylor
series centered at any point a ∈ C.

f(z) =

∞∑
n=0

f (n)(a)

n!
(z − a)n

Theorem 1.1.2. Euler’s Formula states that for any real number φ ∈ R,

eiϕ = cosϕ+ i sinϕ

Proposition 1.1.1. Any complex number z ∈ C can be represented in the form z = reiϕ.

Definition 1.1.4. A field R is a set with two laws of composition denoted + and × that satisfy the following axioms:

� Identity ∃ elements denoted 0, 1 ∈ R such that 1× a = a and 0 + a = a, ∀ a ∈ R.

� Additive Inverse For all a ∈ R, there exists an element −a ∈ R such that −a+ a = 0.

� Multiplicative Inverse For all nonzero a ∈ F , there exists an element a−1 ∈ R such that a× a−1 = 1.

� Associativity For all a, b, c ∈ R, a× (b× c) = (a× b)× c and a+ (b+ c) = (a+ b) + c.

� Commutativity For all a, b ∈ R, a× b = b× a and a+ b = b+ a.

� Distributivity For all a, b, c ∈ R, a× (b+ c) = (a× b) + (a× c).

Proposition 1.1.2. The complex numbers C is a field with multiplicative inverses z−1 = z
|z|2 for any z ∈ C.

Proposition 1.1.3. R is a subfield of C.

1.2 Complex Vectors

Definition 1.2.1. The index set of size N ∈ N denoted [N ] is the set [N ] = {0, . . . , N − 1}.

Definition 1.2.2. the Nth complex vector space is the set CN of vectors v ∈ CN with N complex components vj ∈ C.

Definition 1.2.3. The dot product or Hadamard product of two vectors u,v ∈ CN denoted u · v is defined by

(u · v)j = uj · vj
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1.3 Discrete Fourier Transform

Definition 1.3.1. The discrete Fourier transform (DFT) is a linear transformation F : Cn → Cn defined with the n×n
matrix

Fω,j =
1√
n
e−2πiωj/n

The DFT of a vector v ∈ Cn is v̂ = Fv ∈ Cn.

Definition 1.3.2. A linear transformation is unity iff U†U = I.

Proposition 1.3.1. The DFT matrix F is unitary.

Definition 1.3.3. The inverse discrete Fourier transform (IDFT) is the inverse F−1 = F †.

Theorem 1.3.1. The fast Fourier transform is an algorithm for quickly computing the Fourier transform of a vector
u ∈ CN . Let N = p1p2 . . . pm be the unique prime factorization of N .

ûω =
1√
N

p1−1∑
k=0

û(k,p1)
ω mod N

p1

e−2πiωk/N

Result 1.3.1. The fomplexity of the fast Fourier transform for N = 2m is O(N logN)

1.4 Convolutions

Definition 1.4.1. The circular convolution of two vectors u,v ∈ CN denoted u ∗ v is defined as

(u ∗ v)k =

N−1∑
j=0

ujv(k−j) mod N

Corollary 1.4.0.1. The circular convolution is commutative.

Definition 1.4.2. A matrix is circulant iff all row vectors are composed of the same elements and each row vector is rotated
one element to the right relative to the preceding row vector.

Proposition 1.4.1. The circular convolution by a vector v ∈ CN can be represented as a circulant matrix:

circ(v)kj = v(j−k) mod N

Theorem 1.4.1. Let u,v ∈ CN then
(
û ∗ v

)
ω
= (F (u ∗ v))ω =

√
Nûω · v̂ω, ∀ω ∈ [N ].

Corollary 1.4.1.1. For any u,v ∈ CN , u ∗ v =
√
NF †(Fu · Fv) =

√
N (̂û · v̂).

Corollary 1.4.1.2. For any u,v ∈ CN ,

ûω = (Fu)ω =
(F (u ∗ v))ω
(Fb)ω

√
N

=

(
û ∗ v

)
ω

b̂ω
√
N

Theorem 1.4.2. The eigenvectors of circ(v) for any v ∈ CN are the columns of F †.

Proposition 1.4.2. For two polynomials g(x) =
∑N−1

j=0 gjx
j and r(x) =

∑N−1
j=0 rjx

j . The product of the two polynomials
has at most degree 2N − 2 and can be computed by convolving the two polynomial vectors padded with N − 1 zeros.

g(x)r(x) = g ∗ r =



g0
...

gN−1

0
...
0


∗



r0
...

rN−1

0
...
0


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1.5 Trigonometric Polynomials

Definition 1.5.1. A trigonometric polynomial of degree N is a function p : R → C defined by

p(x) =

N∑
ω=−N

pωe
−ωx

Corollary 1.5.0.1. A trigonometric polynomial is 2π periodic.

Definition 1.5.2. The inner product of trigonometric polynomials p, q ∈ C2N+1 is defined

⟨p, q⟩ = 1

2π

∫ π

−π

p(x)q(x)dx =

N∑
ω=−N

pωqω

Definition 1.5.3. The norm of a trigonometric polynomial p ∈ C2N+1 is defined by

||p||2 = ⟨p, p⟩ = 1

2π

∫ π

−π

|p(x)|2dx =

N∑
ω=−N

|pω|2

Definition 1.5.4. The Fourier transform of a trigonometric polynomial p ∈ C2N+1 is defined as

F [p](ω) = p̂ω = ⟨p, eiωx⟩ = pω =
1

2π

∫ π

−π

p(x)e−iωxdx

Definition 1.5.5. The Inverse Fourier transform of a trigonometric polynomial p̂ω ∈ C2N+1 is defined as

F−1[p̂](x) =

N∑
ω=−N

p̂ωe
iωx

Definition 1.5.6. The convolution of two trigonometric polynomials p, q ∈ C2N+1 denoted p ∗ q is defined

(p ∗ q)(y) = 1

2π

∫ π

−π

p(x)q(y − x)dx

Theorem 1.5.1. F [p ∗ q](ω) = F [p](ω) · F [q](ω) = p̂ω · q̂ω ∀ω{−N, . . . , N}

Corollary 1.5.1.1. deg(p ∗ q) ≤ min{deg(p),deg(q)}

Theorem 1.5.2. Let p ∈ C2N+1 be a trigonometric polynomial with Fourier transform p̂ω. The discrete Fourier transform

v̂ of the vector v defined by vj = p
(

2πj
2N+1

)
is the reordered elements of p̂ω.

p̂0
...
p̂N
p̂−N

p̂−N+1

...
p̂−1


=

v̂√
2N + 1

Corollary 1.5.2.1. For a trigonometric polynomial p ∈ C2N+1, p̂ω = 2π
2N+1

∑2N
j=0 p

(
2πj

2N+1

)
e

−2πijω
2N+1

Theorem 1.5.3. For an infinite trigonometric polynomial p ∈ C∞, defined by p(x) =
∑

ω∈Z cωe
iωx and a finite sampling

u ∈ CN defined by cj = p
(
2πj
N

)
, the Fourier transform of u is

ûω =
√
N

∑
j=ω mod N

p̂j

4



1.6 Heat Equation

Definition 1.6.1. The heat equation is a differential equation of the form

∂u

∂t
= k

∂2

∂x2
u− f

where u(x, t), u(x, 0), and f(x) are degree ≤ N trigonometric polynomials.

u(x, t) =

N∑
ω=−N

ûω(t)e
iωx

Proposition 1.6.1. The derivative of the Fourier transform can be written as

∂

∂t
ûω(t) = −kω2ûω(t)− f̂ω

Proposition 1.6.2. For ω ̸= 0 the Fourier transform of the solution to the heat equation is

ûω(t) = e−kω2t

(
ûω(0) +

f̂ω
kω2

)
− f̂ω

kω2

Theorem 1.6.1. The solution to the heat equation can be written in terms of discrete Fourier transforms

u(x, t) =

N∑
ω=−N

(
e−kω2t

(
uω(0) +

f̂ω
kω2

)
− f̂ω

kω2

)
eiωx + ĝo
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Chapter 2

Fourier Series

2.1 Riemann Integrability

Definition 2.1.1. A partition PN of [a, b] is a set of N ordered points PN ⊂ [a, b] denoted PN = {x0, x1, . . . , xN−1} such
that

a = x0 < x1 < · · · < xN−1 = b

Definition 2.1.2. The mesh size of a partition PN is maxi∈[0,N−2]∩Z |xi+1 − xi|

Definition 2.1.3. The upper and lower sums denoted L(f, PN ) and U(f, PN ) of a function f with partition PN are
defined

U(f, PN ) =

N−2∑
j=0

sup
t∈[xj ,xj+1]

(xj+1 − xj)

L(f, PN ) =

N−2∑
j=0

inf
t∈[xj ,xj+1]

(xj+1 − xj)

Definition 2.1.4. A function f is a Riemann integrable function iff ∀ε > 0, there exists PN with ε(PN ) < ε such that

|L(f, PN )− U(f, PN )| < ε

Definition 2.1.5. A complex function f : [a, b] → C is a complex Riemann integrable function iff both Re(f) and
Im(f) are Riemann integrable.

Corollary 2.1.0.1. A continuous function is Riemann integrable.

Definition 2.1.6. A function f : [a, b] → C is piecewise continuous denoted f ∈ P([a, b]) iff there exists a finite set of
points {x0, x1, . . . , xN−1} = D ⊂ [a, b] such that f is continuous on the following intervals

(a, x0), (x0, x1), . . . , (xN−2, xN−1), (xN−1, b)

Theorem 2.1.1. If a function f is piecewise continuous and bounded then it is Riemann integrable.

Definition 2.1.7. A function f : [a, b] → C is a piecewise smooth denoted f ∈ PS([a, b]) iff f, f ′ both exist and are
piecewise continuous.

Definition 2.1.8. The inner product of functions f, g : [a, b] → C is defined

⟨f, g⟩ = 1

2π

∫ π

−π

f(x)g(x)dx

2.2 Bessel’s Inequality

Definition 2.2.1. The Fourier coefficients denoted cn, an, bn of a function f : [a, b] → C are

cn =
1

b− a

∫ b

a

f(θ)e
−2πinθ

b−a dθ

an =
2

b− a

∫ b

a

f(θ) cos

(
2πnθ

b− a

)
dθ

bn =
2

b− a

∫ b

a

f(θ) sin

(
2πnθ

b− a

)
dθ
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Corollary 2.2.0.1. The Fourier coefficients for a 2π-periodic function f : [−π, π] → C are

cn =
1

2π

∫ π

−π

f(θ)e−inθdθ

an =
1

π

∫ π

−π

f(θ) cos (nθ)dθ

bn =
1

π

∫ π

−π

f(θ) sin (nθ)dθ

Theorem 2.2.1. Bessel’s Inequality states that if f : [a, b] → C is Riemann integrable then

∞∑
n=−∞

|cn|2 ≤ 1

b− a

∫ b

−a

|f(θ)|2

Corollary 2.2.1.1. If f : [−π, π] → C is 2π-periodic and Riemann integrable then

∞∑
n=−∞

|cn|2 ≤ 1

2π

∫ π

−π

|f(θ)|2

Corollary 2.2.1.2. The Fourier series converges absolutely.

Definition 2.2.2. The Nth parital Fourier sum of a function f : [a, b] → C denoted Sf
N (θ) defined

Sf
N (θ) =

N∑
n=−N

cne
inθ

Theorem 2.2.2. If f : [a, b] → C is a piecewise smooth function that is f ∈ PS([a, b]) with discontinuities {x0, x1, . . . } then

lim
N→∞

Sf
N (θ) = f(θ), ∀θ ∈ [a, b]− {x0, x1, . . . }

2.3 The Dirchlet Kernel

Definition 2.3.1. The Dirchlet Kernel denoted DN (y) is defined

DN (y) =
1

2π

N∑
k=−N

eiky

Corollary 2.3.0.1. For any function f : [a, b] → C, Sf
N (θ) = (DN ∗ f)(θ).

Proposition 2.3.1. The Dirchlet kernel can be written in terms of sin, DN (y) = sin((N+1/2)y)
sin(y/2)

Proposition 2.3.2. The following properties of the Dirchlet kernel DN (y) hold for all N ∈ N.

� DN (0) = 2N + 1

� The Dirchlet kernel is 2π-periodic

� |DN (y)| ≤ 1
| sin(y/2)|

� DN

(
2π

2N+1k
)
= 0 for k ∈ {−N, . . . ,−1, 1, . . . , N}

�
1
2π

∫ π

−π
DN (y) = 1

�
1
2π

∫ 0

−π
DN (y) = 1

2π

∫ π

0
DN (y) = 1

2

Theorem 2.3.1. The Sf
N is piecewise continuous and bounded.

Theorem 2.3.2. If f : [a, b] → C is a piecewise smooth function that is f ∈ PS([a, b]) with discontinuities {x0, x1, . . . } then

lim
N→∞

Sf
N (θ) =

f(θ−) + f(θ+)

2
, ∀θ ∈ [a, b]

Proposition 2.3.3. The Cardinality of PS([−π, π]) is |R|.
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2.4 Smoothness

Definition 2.4.1. A function f is Ck smooth iff f (k) exists and is Riemann integrable.

Corollary 2.4.0.1. A function f is Ck smooth iff f ′, f ′′, . . . , f (k−1) are continuous.

Proposition 2.4.1. For a C1 smooth function f ∈ C1 with Fourier coefficients cn and derivative f ′ with Fourier coefficients
c′n.

c′n = incn

Theorem 2.4.1. For a Ck smooth function f ∈ Ck with Fourier coefficients cn and derivatives f (ℓ) with Fourier coefficients

c
(ℓ)
n .

c(k)n = (in)ℓcn, ∀n ∈ {0, 1, . . . , k}

Proposition 2.4.2. For a real valued function f : [a, b] → R, cn = an

2 − ibn
2 .

Corollary 2.4.1.1. For a Ck smooth function f ∈ Ck, there exists a sequence an → 0 as |n| → ∞ such that

|cn| ≤ an|n|−k, ∀n ∈ Z− {0}

Theorem 2.4.2. For a Ck smooth function f : [a, b] → C ∈ Ck, there exists a constant c ∈ R+ such that

|f(θ)− Sf
N (θ)| ≤ c

N
, ∀θ ∈ [a, b]

Theorem 2.4.3. Let g, f ∈ C1 be 2π-periodic functions then

(f ∗ g)(θ) = 1

2π

∫ π

−π

f(y)g(θ − y)dy, (̂f ∗ g)n = f̂n · ĝn

2.5 Aliasing Error

Definition 2.5.1. The aliased Fourier coefficients denoted c̃n are defined

c̃n :=
(−1)n

N

N−1∑
k=0

f

(
−π + k · 2π

N

)
e

−2πink
N

Theorem 2.5.1. Aliased Fourier coefficients c̃n with N samples can be written in terms of the exact Fourier coefficients cn,

c̃n = cn +
∑
|g|>1

cn+gN

8



Chapter 3

Hilbert Spaces

3.1 Inner Product Spaces

Definition 3.1.1. A vector space is a set V with addition and scalar multiplication such that the folowing properties hold

� Commutativity: v + w = w + v ∀ v, w ∈ V

� Associativity: (u+ v) + w = u+ (w + v) ∀ u, v, w ∈ V

� Zero Vector: ∃ a vector 0 such that for any vector v ∈ V, v + 0 = v

� Additive Inverse: for any vector v ∈ V there exists a vector −v ∈ V such that v − v = 0

� Multiplicative Identity: for any vector v ∈ V, v · 1 = v

� Additive Conservation: for any two vectors v, w ∈ V, v + w ∈ V

� Multiplicative Conservation: for any vector v ∈ V and any scalar a, we have av ∈ V

Definition 3.1.2. An inner product denoted ⟨·, ·, ⟩ : V 2 → C is a function taking two vectors in a vector space V to C
such that for all u, v, w ∈ V and α ∈ C,

� ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩.

� ⟨αv,w⟩ = α⟨v, w⟩

� ⟨v, w⟩ = ⟨̂w, v⟩

� ⟨v, v ∈ R+ and ⟨v, v⟩ = 0 ⇔ v = 0.

Definition 3.1.3. An inner product space is a vector space equipped with an inner product.

Definition 3.1.4. The norm of a vector v ∈ V denoted ||v|| is defined

||v|| =
√
⟨v, v⟩

Proposition 3.1.1. For an inner product space V , any vectors v, w ∈ V , and any scalar α ∈ C,

� ||αv|| = |α|||v||

� ||v|| = 0 ⇔ v = 0

� ||v + w|| ≤ ||v||+ ||w||

Proposition 3.1.2. The Cauchy Schwartz inequality state that for any two vectors v, w ∈ V in an inner product space,

|⟨v, w⟩| ≤ ||v||||w||
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3.2 Hilbert Spaces

Definition 3.2.1. An orthogonal set of vectors {vj}j∈I ⊂ V is a set of vectors in an inner product space such that

⟨vj , vℓ⟩ = δj,ℓ, ∀j, ℓ ∈ I

Theorem 3.2.1. General Bessel’s Inequality states that for any vector f ∈ V and any orthonormal set of vectors {vj}j∈I

in an inner product space, ∑
j∈I

|⟨f, vj |2 ≤ ||f ||2

Definition 3.2.2. A Cauchy sequence of vectors {vj}∞j=1 ⊂ V is a sequence in an inner product space such that ∀ε > 0
there exists N ∈ N such that ∀n,m ≥ N , ||vn − vm|| ≤ ε.

Definition 3.2.3. A complete inner product space is an inner product space where every Cauchy sequence has a limit
point.

Definition 3.2.4. A Hilbert space is a complete inner product space.

Definition 3.2.5. A sequence vj converges in a Hilbert space H iff there exists v ∈ H such that limj→∞ ||vj − v|| = 0.

Definition 3.2.6. The limit of a convergent sequence vj is defined as the vector v ∈ H such that limj→∞ ||vj − v|| = 0.

Proposition 3.2.1. The limit of a sequence is unique.

Definition 3.2.7. An orthonormal set of vectors {vj}Nj=1 is a basis iff

∞∑
j=1

⟨f, vj⟩vj = f, ∀f ∈ H

Proposition 3.2.2. For an orthonormal set of vectors {vj}Nj=1 and any vector f ∈ H,

⟨
∞∑
j=1

⟨f, vj⟩vj , vℓ⟩ = ⟨f, vℓ⟩

Theorem 3.2.2. Let {vj}Nj=1 be an orthonormal set of vectors in a Hilbert space H, the following are equivalent

� {vj}Nj=1 is an orthonormal basis of H.

� ∀f ∈ H, f =
∑∞

j=1 ⟨f, vj⟩vj .

� ⟨f, vj⟩ = 0 for all j, if and only if f = 0.

� ∀f ∈ H, ||f ||2 =
∑∞

j=1 |⟨vj , f⟩|2.

3.3 Sets of Functions

Definition 3.3.1. The set of Ck smooth functions denoted Ck(D) is the set of continuous functions f : D → C such
that f has k continuous derivatives.

Definition 3.3.2. The set of C∞ smooth functions denoted C∞(D) is the set of continuous functions f : D → C with
infinitely many continuous derivatives.

Definition 3.3.3. The set of Lebesgue integrable functions denoted Lp(D) is the set of functions f : D → C such that∫
D

|f(x)|pdx < ∞

Theorem 3.3.1. L2([a, b]) = {f : [a, b] → C :
∫ b

a
|f(x)|2dx < ∞} is a Hilbert space with inner product

⟨f, g⟩ =
∫ b

a

f(x)g(x)dx

Theorem 3.3.2. ∀f ∈ L2([a, b]) and ε > 0 there exists f̃ ∈ C∞([a, b]) such that ||f − f̃ || < ε.

Theorem 3.3.3. {einx}n∈Z is a basis in L2([a, b]).
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3.4 Convergence

Definition 3.4.1. A sequence of functions {fn} is pointwise convergent to a function f : D → C iff for all x ∈ D,

lim
n→∞

fn(x) = f(x)

Definition 3.4.2. A sequence of functions {fn} is uniform convergent to a function f : D → C iff for any ϵ > 0, there
exists N ∈ N such that for all x ∈ D and n > N ,

|fn(x)− f(x)| < ϵ

3.5 Continuous Convolution and Fourier Transform

Definition 3.5.1. The continuous convolution (f ∗ g) of two functions f and g is defined

(f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y)dy

Theorem 3.5.1. For any f, g ∈ L1 ∩ L2, f ∗ g ∈ L1 ∩ L2.

Definition 3.5.2. The continuous Fourier transform f̂ of a function f is defined

f̂(ω) =

∫ ∞

−∞
f(x)e−iωxdx

Definition 3.5.3. C0 ⊂ L2(R) is the subset of continuous in L2(R).

Theorem 3.5.2. Let f ∈ L2(R) then ∀ε > 0, there exists Ñ ∈ Z+ and continuous f̃ ∈ L2([−Ñ , Ñ ]) ⊂ L2(R) such that
||f − f̃ || ≤ ε.

Corollary 3.5.2.1. C0 is dense in L2(R).

Theorem 3.5.3. Let f, g ∈ L1 ∩L2 and suppose that g has k bounded continuous derivatives g′, g′′, . . . , g(k) ∈ L1 ∩L2 then
f ∗ g also has k-derivatives and

(f ∗ g)(ℓ) = (f ∗ g(k))(x), ∀ℓ ∈ 0, 1, . . . , k

11



”You’re apparently majoring in mathematics, and this is the most important topic in mathematics, so I win!”
”When N is up to you, use a power of two!”
”And therefore we can conclude that everything is peachy.”
”As long as its countable, like whatever who cares!”
”Let’s anthropomorphize the Fourier series.”
”You just have to be ready to go from zero to frickin’ abstract!”
”Are you Hilbert’s Friend? Then why are you in his space.”
”I don’t think any of you would do that, but you never know what your students are capable of.”
”But how does this theorem make you feel?”
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