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Stirling’s approximation - for very large N:
log N!~ Nlog N — N
N!'= V2rNNNe™N

Fractional uncertainty of X is uncertainty of
expected value per particle.
AX

(X2) — (X)?
N N
Boltzmann’s constant
kp = 1.380649 x 10723m2s 72 K1
Entropy S = kpo, oror = o1+ 02
Temperature T = 7/kp

Microcanonical Ensemble
Multiplicity function

g = # of microstates, P(n)= —
Expected value of X is the average across all
microstates.

%) = 3 X(n)P(n) = ézxm

Entropy can be written in terms of the
multiplicity function.

o(N,T,U,V, P) =loglg(N,T,U,V, P)]
Binary System

A binary system is a system of N particles
where each particles has two possible states. Let
Ny is the number of particle in the up state and
N be the number of particles in the down state.

NI J
9(N, Np) = s g(N,Np) =2V
NN - Ny N;g '

The binary system can be rewritten in terms of
the differnce between up states and down states
this is the spin excess.

25 =Ny — N,

Applying Stirling’s approximation to the binary
model, for large N the multiplicity function and
fractional uncertainty are

g(N, S) = g(N,0)e= 2" /N
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N,S) ~ y/ ——2Ne—25*/N
g(N,S) =/ N2 e
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An example of a binary system is N spin 1/2
particles in an external magnetic field B. The
total energy U and magnetization M of the
system are

N
U= —m;-B=—(Ny - N))mB = —2SmB
i=1
M =2Sm=-U/B
N!
g(N,U)

M = Nmtanh(mB/T)

Einstein Solid

An einstein solid is a system of N atoms where
each atom is modeled as a harmonic oscillator
the energy of the system is determined by the
number of atoms n oscillating at frequency w.

U = nhw
(n+N-1)!
gN.m) = N )

()" (=)
2mn(n + N)/N
Thermal Equilibrium

Temperature
1 (80)
T \aU NV

Thermal Equilibrium

(50),. = (52)
UL /) Ny vy U2/ Ny, vy
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T1 T2
2nd law of thermo - Change in entropy > 0.
Sharpness of Equilibrium For a two binary
systems, the number of states in a configuration
of deviation § from equilibirum is

252 _ 252
Nip  Na

g(N,n) =

g192 = (gng)maze(

Canonical Ensemble

Partition Function - partition by energy levels
for a fixed temperature

z= Zefsn/'r,
2= glea)e /",

Expected Value of X is the average across all
energies (Thermal Average).

1
X) =D "X(n)P(n) = =Y X(n)e /7
n Z n
Expected Energy in the canonical ensemble is
= 1 Z ene /7
z
n
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The total partition function and expected value

for N non-interacting particles is simply

leffn/T

P(n) =

for degeneracy g(ea)

U= ()=

Zn =2
X)n =N{X);1 = Unx=NU
Helmholtz Free Energy
F=U—-710=U-8T=—-1logz
AF <0 - helmholtz free energy decreases

dF' = 0 - helmholtz free energy minimized
OF

Entropy ¢ = — (W>V , S=kpo
Temperature 7 = (%—g)
Pressure
=), (), - ()
ov ), oV /)y ov ).

Energy U = —72 887— (g
Concentration and DeBroglie Wavelength
N 1 A 2mh2
n=—, n —-,
\% Q )x% T mT

Single Particle Ideal Gas
A system in the canonical ensemble consisting of
a signle particle in a box of side lengths L. The
energy levels , partition function and average
energy are
2, R?r? 2 2
= omi" T gmpr e Ty )

and for the ultra-reletavistic case:

mhe mhe 2 2 >
En:pc:—Ln:—L ng +ny +n3
14 3
=53 Ul_iT

N-Particle Ideal Gas

Gibbs Resolution for systems of IV identical
particles the partition function is

R

z
N = N1

PV =Nr, U= SNT

1% 5
=N |1 2
’ [Og(mi‘r> +2}

F=Nr {logi —1}
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Thermal Radiation
Single Frequency Photon Gas is a system in
the canonical ensemble that considers photons of
a specific frequency w.

es = shw, s=0,1,2,3,...
—sﬁw/f _
Z_Ze 1_efhw/7'
—shw/T
P(s) = <

—shw/T _
Zse - hw/T_

Photon Gas is an expansion of the single
frequency photon gas that considers all the
possible cavity modes. The modes are 2 fold
degenerate for the 2 independent polarizations.

cT cTn
Wy = /n2 +n2 +n? =
n=T +ny + T

hwn, w2V
= =2 =
() Z ehwn /T _ 1 15()‘10)37—
n
Stefan-Boltzmann Law
U h > w3 72 N
V_,,I-QCZS/ ehw/f_ldw_ 37
Spectral Density Function
oU h w3

oWV w23 ehw/T — 1
Flux Density (o g=Stefan-Boltzmann constant)
1cU 4 2 4
J = = —
PTaV TP T Go(he)s

Phonons in a Solid (Debye Model)

Phonons in a solid is a system in the canonical
ensemble that is very similar to thermal
radiation except there is 3 fold degeneracy from
3 polarizations of phonons and an upper cutoff
frequency wp due to the separation distance
between atoms.

mCcs 2 2 2 TCs
Wnp = ——/ng +ns +ni = n
L z Y z L

Debye cutoff frequency

6m2N /3 TCcg
wp = Cg % ; WD = —/—MND




Grand Canonical Ensemble
Chemical Potential
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Grand Partition Function - partition by
energy levels for a fixed temperature and all
possible values of N

2= > e—(en —uN)/T

P(N,en) = lef(an*uN)/T
Z,
Fugacity
A= e“/T
= A S Y
s(N) N

Expected Value of X is the average across all
energies (Diffusive Average).

_1 3SR, s)e—(e5 —HN)/T
% N s

Expected Number of Particles in the grand
canonical ensemble is

_1 SOS T Ne (X /e
4 N s

) )
N = (N) = A1
(N) = "on oy 1084

Expected Energy in the grand canonical

ensemble is
LS 3 et em

Tz N n(N)

U= () =12 (2 logq)
or N
Grand Potential
Q=U—-or—uN
Q= —7logg
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System of Non-interacting Particles
The grand partition function for a system with

M energy states where nq is the number of
particles occupying a state is

e ﬁ tar T =3 emalcah/T
a=1 Nay

logz,=

U =

3

M M
U= eaflea), N=D_ f(ea)
a=1 a=1

—89)
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Fermions
ng =0,1
7, =14 e~ (Ea=r)/T — 1 4 \emCa/T
Fermi-Dirac Distribution is the expected
number of a particles in a particular energy e .

1 1
(na) = f(ea) = elea—1)/7 11 = Alesa/T +1
For 7 — 0: f(ea) =60(ea — 1)
Bosons
ne =0,1,2,3,...
1 1
Ao T T o (a—m/T 1 re—cal7

Boson Distribution is the expected number of

a particles in a particular energy eq.

1 1
<na> = f(Ea) = elea—n)/T7 _ 1 = Aleca/T — 1
Ideal Gas

Both fermions and bosons behave identically at

the classical limit eq — p >> 7.
(na) = f(ca) = e~ (a7
1
Q:ZANZN :Z)\N—'Z{V—e)‘ b
N N Nt
3
A= l, PV =Nr, U=—-Nr, u:’rlogi
nQ 2 nQ
5
cr:N|:logn—Q+f:|, F=Nr {logﬂfl}
n 2 nQ

Heat Capacity measures the change in heat
energy per unit temperature

ou ( do )
=7 —
v or)y

Cp>Cy, Cy= (ﬁ)

ou ov 0
con ()72, (%)
oT ) p oT ) p oT ) p
Monoatmc gas Cy = %NICB, Cp = gNk:B
Isothermal Expansion oy — 0; = N log %

Q:N'rlogg

T (Vi\*?
i \Vy

Internal Excitations

Expansion of the ideal gas to take into account
the additional energy states from internal
excitations.

Isoentropic Expansion

Zint =

See/T =14 Azipge /7
«

Internal Excitation Corrections

n n
=T (log — —log Zint)
anint 'IZQ

A=

F=Nr {logi — 1} — NTlog zint
nQ

F-
a:N{logl+§} - (8 lm)
ng 2 or Jv

Density of States
;f(en) ~ /0 D(e)f(e)de
X) = Z f(en)Xn = /0(><> D(e) f(e)X(e)de

Finding Density of States

&) =953 6z~ n)

de
Expected Energy and Expected Number of
Particles written in terms of the density of

states:
v, e

N:/O D(e)f(e)de

At 7 << ef, the integrals can be reduced

f(e)de

U(r=0) = /OF eD(e)de

N(r=0) = /OEF D(e)de

Degenerate Fermi Gas

Fermions behave differently at quantum
concentrations.
Fermi Energy - ep = 75 = pu(7 = 0)

N = ‘/OEF D(e)de

Groud State Energy - Up = U(7 = 0)

Sommerfeld Expansion

for finite 7 << ep:

w(r << ep)mer+ (
T 2
Ut <<ep)=Uy+ <7) Up
EF

Ideal Fermi Gas
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Bose-Einstain Condensate

Bosons behave differently at quantum
concentrations.

No(7) is the number of ground state particles.
Ne(7) is the number of excited state particles.

1
eleo—w)/m — 1

No(7) = (neg) = fleo0,7) =

No(r) = /Ooo F(e)D(e)de
Limits at (7 =~ 0):

’
Reg— —
12 0 I

BEC Possible? N, converges = BEC
N, diverges = NO BEC

Critical Temperature The maximum
temperature 7 where BEC is possible.

N = NE(T)|M:0

For 7 < 7 the normal phase and condensate are
approximately

No(r) =N (1 - (TTE)S/Q>

Ideal Boson Gas
R2n? _,
€n=2mL2n, =1,2,3,4,...

No =
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Thermodynamics
First Law - dU = dQ + dW
Reversible process: dU = tdo + dW

Heat Engines

A heat engine is any devices that converts
transfer of heat into work, Qg /opg denotes the
heat/entropy transferred from the hot reservoir,
Qc/oc denotes the heat/entropy transferred to
the cold reservoir, and W denotes the work
extracted.

Reversible Heat Engine

_ Qm _ Q¢
)
Engine Efficiency the amount of work
extracted per unit of heat transferred.
0= W Qu—Qc

Qu Qu
Carnot Efficiency the engine efficiency of a
reversible heat engine.

ne—1-9¢ _4_TC
Qu TH
The engine efficiency of an engine is less than or
equal to the carnot efficiency.

T
n < ne, (Q—C) > (—C)
QH real TH / rev

Carnot Cycle Counterclockwise = Heat
Engine, Clockwise = Refrigerator

OH

1. Isothermal expansion from oy, to og.
2. Isoentropic expansion from 7x to 7¢.
3. Isothermal compression from oy to or,.
4

. Isoentropic compression from 7¢ to 7.

Refrigerators

A refrigerator is any device that converts work
into transfer of heat, Qr /og denotes the
heat/entropy transferred to the hot reservoir,
Q¢ /oc denotes the heat/entropy transferred
from the cold reservoir, and W denotes the work
used.

Reversible Refrigerator

_ Qm _ Q¢
- oCc = —
TH TC

OH

Coefficient of Performance the amount of
heat transferred per unit of work used.

_ Qo Qc

W Qm-Qc
Carnot Coefficient of Performance the
coefficient of performance of a reversible
refrigerator.

1 1 TC

Y=gy [T T 1
Qc el

TH — TC

The coefficient of performance of a refrigerator is
less than or equal to the carnot coefficient of
performance.

Qu TH
7 < Ye (7 > =
QC real TC / rev

Types of Work

Irreversible Process
dbarWipr > AWiren

inrT < ere'u
Isothermal Work

dW > dF, (= for reversible)
Effective Work

aw’ = dW — aWpecn
Gibbs Free Energy

minimized at equilibrium for a system in the
isothermal—-isobaric ensemble.

G=U-—-710+ PV
Reversible Processes: dW' = dG

(5)
o=—|—
or ) pN

Enthalpy

minimized at equilibrium for a system at
constant pressure.

H=U+ PV
Reversible Processes: dW’' = dH — dQ

(5)

T=—

do PN

VZ(%)
OP ) o N

_ (‘E)
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Chemical Reactions

The Gibbs free energy can be written in terms of
the chemical potential and particles number.

G=Np
Total Gibbs Free Energy

G=3 Nju
J

Chemical Equation Number v is the sign
and magnitude of dN relative to the other
components of the reaction. For products v < 0
and for reactants v > 0.

Chemical Equilibrium

> dNjp; =0 =dG

J
D ving =0
J
Ideal Gas Model
pi = 7(logn; —logcy)

Cj = NQ,j%j,int
Law of Mass Action K(7) only depend on 7.

Vi Vi Vi
K =]In" =11ng %00
J J

) int
K(r)= HnVQJ’jeﬂ'JFJ' /T
J
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