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Stirling’s approximation - for very large N :

logN ! ≈ N logN −N

N ! ≈
√

2πNNNe−N

Fractional uncertainty of X is uncertainty of
expected value per particle.

∆X
N

=

√
〈X2〉 − 〈X〉2

N

Boltzmann’s constant
kB = 1.380649× 10−23m2 s−2 K−1

Entropy S = kBσ, σTOT = σ1 + σ2
Temperature T = τ/kB

Microcanonical Ensemble
Multiplicity function

g = # of microstates, P(n) =
1

g

Expected value of X is the average across all
microstates.

〈X〉 =
∑
n

X(n)P(n) =
1

g

∑
n

X(n)

Entropy can be written in terms of the
multiplicity function.

σ(N,T, U, V, P ) ≡ log[g(N,T, U, V, P )]

Binary System
A binary system is a system of N particles
where each particles has two possible states. Let
N↑ is the number of particle in the up state and
N↓ be the number of particles in the down state.

g(N,N↑) =
N !

N↑!(N −N↑)!
,

N∑
N↑=0

g(N,N↑) = 2N

The binary system can be rewritten in terms of
the differnce between up states and down states
this is the spin excess.

2S = N↑ −N↓

g(N,S) =
N !

(N
2

+ S)!(N
2
− S)!

S=N
2∑

S=−N
2

g(N,N↑) = 2N

Applying Stirling’s approximation to the binary
model, for large N the multiplicity function and
fractional uncertainty are

g(N,S) ≈ g(N, 0)e−2s2/N

g(N,S) ≈
√

2

πN
2Ne−2s2/N

∆S

N
≈

1
√
N

An example of a binary system is N spin 1/2
particles in an external magnetic field B. The
total energy U and magnetization M of the
system are

U =
N∑
i=1

− ~mi · ~B = −(N↑ −N↓)mB = −2SmB

M = 2Sm = −U/B

g(N,U) =
N !

(N
2
− U

2mB
)!(N

2
+ U

2mB
)!

σ(N,S) ≈ −
(
N
2

+ S
)

log
(

1
2

+ S
N

)
−(

N
2
− S

)
log
(

1
2
− S
N

)
M = Nm tanh(mB/τ)

Einstein Solid
An einstein solid is a system of N atoms where
each atom is modeled as a harmonic oscillator
the energy of the system is determined by the
number of atoms n oscillating at frequency ω.

U = n~ω

g(N,n) =
(n+N − 1)!

n!(N − 1)!

g(N,n) ≈

(
n+N
n

)n (
n+N
n

)N
√

2πn(n+N)/N

Thermal Equilibrium
Temperature

1

τ
=

(
∂σ

∂U

)
N,V

Thermal Equilibrium(
∂σ1

∂U1

)
N1,V1

=

(
∂σ2

∂U2

)
N2,V2

1

τ1
=

1

τ2
2nd law of thermo - Change in entropy ≥ 0.
Sharpness of Equilibrium For a two binary
systems, the number of states in a configuration
of deviation δ from equilibirum is

g1g2 = (g1g2)maxe

(
− 2δ2

N1
− 2δ2

N2

)

Canonical Ensemble
Partition Function - partition by energy levels
for a fixed temperature

z =
∑
n

e−εn/τ , P(n) =
1

z
e−εn/τ

z =
∑
α

g(εα)e−εα/τ , for degeneracy g(εα)

Expected Value of X is the average across all
energies (Thermal Average).

〈X〉 =
∑
n

X(n)P(n) =
1

z

∑
n

X(n)e−εn/τ

Expected Energy in the canonical ensemble is

U = 〈ε〉 =
1

z

∑
n

εne
−εn/τ

U = 〈ε〉 = τ2
1

z

∂z

∂τ
= τ2

∂

∂τ
log z

The total partition function and expected value
for N non-interacting particles is simply

zN = zN1

〈X〉N = N〈X〉1 ⇒ UN = NU1

Helmholtz Free Energy
F = U − τσ = U − ST = −τ log z

∆F ≤ 0 - helmholtz free energy decreases
dF = 0 - helmholtz free energy minimized

Entropy σ = −
(
∂F
∂τ

)
V
, S = kBσ

Temperature τ =
(
∂U
∂σ

)
V

Pressure

P = −
(
∂U

∂V

)
σ

= τ

(
∂σ

∂V

)
U

= −
(
∂F

∂V

)
τ

Energy U = −τ2 ∂
∂τ

(
F
τ

)
Concentration and DeBroglie Wavelength

n =
N

V
, nQ =

1

λ3T
, λT =

√
2π~2

mτ

Single Particle Ideal Gas
A system in the canonical ensemble consisting of
a signle particle in a box of side lengths L. The
energy levels , partition function and average
energy are

εn =
~2π2

2mL2
n2 =

~2π2

2mL2
(n2
x + n2

y + n2
z)

and for the ultra-reletavistic case:

εn = pc =
π~c
L
n =

π~c
L

√
n2
x + n2

y + n2
z

z1 =
V

λ3T
, U1 =

3

2
τ

σ1 = log

(
V

λ3T

)
+

3

2
, F1 = −τ log

V

λ3T

N-Particle Ideal Gas
Gibbs Resolution for systems of N identical
particles the partition function is

zN =
1

N !
(z1)N

PV = Nτ, U =
3

2
Nτ

σ = N

[
log

(
V

Nλ3T

)
+

5

2

]

F = Nτ

[
log

n

nQ
− 1

]
Thermal Radiation
Single Frequency Photon Gas is a system in
the canonical ensemble that considers photons of
a specific frequency ω.

εs = s~ω, s = 0, 1, 2, 3, . . .

z =

∞∑
s=0

e−s~ω/τ =
1

1− e−~ω/τ

P(s) =
e−s~ω/τ

z

〈s〉 =
1

z

∞∑
s=0

se−s~ω/τ =
1

e~ω/τ − 1

Photon Gas is an expansion of the single
frequency photon gas that considers all the
possible cavity modes. The modes are 2 fold
degenerate for the 2 independent polarizations.

ωn =
cπ

L

√
n2
x + n2

y + n2
z =

cπn

L

U = 〈ε〉 = 2
∑
n

~ωn
e~ωn/τ − 1

=
π2V

15(~c)3
τ4

Stefan-Boltzmann Law

U

V
=

~
π2c3

∫ ∞
0

ω3

e~ω/τ − 1
dω =

π2

15(~c)3
τ4

Spectral Density Function

∂

∂ω

U

V
=

~
π2c3

ω3

e~ω/τ − 1

Flux Density(σB=Stefan-Boltzmann constant)

Jµ =
1

4

cU

V
= σBτ

4 =
π2

60(~c)3
τ4

Phonons in a Solid (Debye Model)
Phonons in a solid is a system in the canonical
ensemble that is very similar to thermal
radiation except there is 3 fold degeneracy from
3 polarizations of phonons and an upper cutoff
frequency ωD due to the separation distance
between atoms.

ωn =
πcS

L

√
n2
x + n2

y + n2
z =

πcs

L
n

Debye cutoff frequency

ωD = cS

(
6π2N

V

)1/3

, ωD =
πcS

L
nD



Grand Canonical Ensemble
Chemical Potential

µ =

(
∂F

∂N

)
τ,V

µ = τ log

(
Nλ3T
V

)
= τ log

(
n

nQ

)
µ =

(
∂U

∂N

)
σ,V

= −τ
(
∂σ

∂N

)
U,V

Grand Partition Function - partition by
energy levels for a fixed temperature and all
possible values of N

ü =
∑
N

∑
n(N)

e−(εNn −µN)/τ

P(N, εn) =
1

ü
e−(εNn −µN)/τ

Fugacity
λ = eµ/τ

ü =
∑
N

λN
∑
s(N)

e−ε
N
s /τ =

∑
N

λNzN

Expected Value of X is the average across all
energies (Diffusive Average).

〈X〉 =
1

ü

∑
N

∑
s

X(N, s)e−(εNs −µN)/τ

Expected Number of Particles in the grand
canonical ensemble is

N = 〈N〉 =
1

ü

∑
N

∑
s

Ne−(εNs −µN)/τ

N = 〈N〉 = τ
∂

∂µ
log ü = λ

∂

∂λ
log ü

Expected Energy in the grand canonical
ensemble is

U = 〈ε〉 =
1

ü

∑
N

∑
n(N)

εNn e
−(εNn −µN)/τ

U = 〈ε〉 = τ2
(
∂

∂τ
log ü

)
λ

Grand Potential
Ω = U − στ − µN

Ω = −τ log ü

σ =

(
−∂Ω

∂τ

)
V,µ

P =

(
−∂Ω

∂V

)
τ,µ

N =

(
−∂Ω

∂µ

)
τ,V

System of Non-interacting Particles
The grand partition function for a system with
M energy states where nα is the number of
particles occupying a state is

ü =

M∏
α=1

üα, üα =
∑
nα

e−nα(εα−µ)/τ

U =

M∑
α=1

εαf(εα), N =

M∑
α=1

f(εα)

Fermions
nα = 0, 1

üα = 1 + e−(εα−µ)/τ = 1 + λe−εα/τ

Fermi-Dirac Distribution is the expected
number of a particles in a particular energy εα.

〈nα〉 = f(εα) =
1

e(εα−µ)/τ + 1
=

1

λ−1eεα/τ + 1

For τ → 0: f(εα) = θ(εα − µ)

Bosons
nα = 0, 1, 2, 3, . . .

üα =
1

1− e−(εα−µ)/τ
=

1

1− λe−εα/τ
Boson Distribution is the expected number of
a particles in a particular energy εα.

〈nα〉 = f(εα) =
1

e(εα−µ)/τ − 1
=

1

λ−1eεα/τ − 1

Ideal Gas
Both fermions and bosons behave identically at
the classical limit εα − µ >> τ .

〈nα〉 = f(εα) = e−(εα−µ)/τ

ü =
∑
N

λNzN =
∑
N

λN
1

N !
zN1 = eλz1

λ =
n

nQ
, PV = Nτ, U =

3

2
Nτ, µ = τ log

n

nQ

σ = N

[
log

nQ

n
+

5

2

]
, F = Nτ

[
log

n

nQ
− 1

]
Heat Capacity measures the change in heat
energy per unit temperature

CP > CV , CV =

(
∂U

∂T

)
V

= τ

(
∂σ

∂T

)
V

CP =

(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

= τ

(
∂σ

∂T

)
P

Monoatmc gas CV = 3
2
NkB , CP = 5

2
NkB

Isothermal Expansion σf − σi = N log
Vf
Vi

Q = Nτ log
Vf
Vi

Isoentropic Expansion
τf
τi

=
(
Vi
Vf

)2/3
Internal Excitations
Expansion of the ideal gas to take into account
the additional energy states from internal
excitations.

zint =
∑
α

e−εα/τ , ü = 1 + λzinte
−εn/τ

Internal Excitation Corrections

λ =
n

nQzint
, µ = τ

(
log

n

nQ
− log zint

)
F = Nτ

[
log

n

nQ
− 1

]
−Nτ log zint

σ = N

[
log

n

nQ
+

5

2

]
−
(
∂Fint

∂τ

)
V

Density of States∑
n

f(εn) ≈
∫ ∞
0

D(ε)f(ε)dε

〈X〉 =
∑
n

f(εn)Xn =

∫ ∞
0

D(ε)f(ε)X(ε)dε

Finding Density of States

Σ(ε) = gS
∑
n

θ(ε− εn)

D(ε) =
dΣ(ε)

dε
Expected Energy and Expected Number of
Particles written in terms of the density of
states:

U =

∫ ∞
0

εD(ε)f(ε)dε

N =

∫ ∞
0

D(ε)f(ε)dε

At τ << εF , the integrals can be reduced

U(τ = 0) =

∫ εF

0
εD(ε)dε

N(τ = 0) =

∫ εF

0
D(ε)dε

Degenerate Fermi Gas

Fermions behave differently at quantum
concentrations.
Fermi Energy - εF = τf = µ(τ = 0)

N =

∫ εF

0
D(ε)dε

Groud State Energy - U0 = U(τ = 0)

Sommerfeld Expansion

for finite τ << εF :

µ(τ << εF ) ≈ εF +

(
τ

εF

)2

εF

U(τ << εF ) ≈ U0 +

(
τ

εF

)2

U0

Ideal Fermi Gas

εn =
~2π2

2mL2
~n2, ~n = 1, 2, 3, 4, . . .

N =

(
1

23
4π

3
nF

)
n2
F = π

n3
F

3
⇒ nf =

(
3N

π

)1/3

εF =
~2π2

2mL2
n2
F =

~2

2m

(
3π2N

V

)2/3

= τF

U0 =
3

5
NεF

P0 =
2

3

U0

V

D(ε) =
V

2π2

(
2m

~2

)3/2

ε1/2

Bose-Einstain Condensate
Bosons behave differently at quantum
concentrations.
N0(τ) is the number of ground state particles.
Ne(τ) is the number of excited state particles.

N0(τ) = 〈nε0 〉 = f(ε0, τ) =
1

e(ε0−µ)/τ − 1

Ne(τ) =

∫ ∞
0

f(ε)D(ε)dε

Limits at (τ ≈ 0):

N0(τ) ≈
τ

ε0 − µ

µ ≈ ε0 −
τ

N
BEC Possible? Ne converges ⇒ BEC
Ne diverges ⇒ NO BEC
Critical Temperature The maximum
temperature τE where BEC is possible.

N = Ne(τ)|µ=0

For τ < τE the normal phase and condensate are
approximately

Ne(τ) = N

(
τ

τE

)3/2

N0(τ) = N

(
1−

(
τ

τE

)3/2
)

Ideal Boson Gas

εn =
~2π2

2mL2
~n2, ~n = 1, 2, 3, 4, . . .

N0 =
1

e−µ/τ − 1
=

1

λ−1 − 1

Ne =
V

4π2

(
2m

~

)3/2 ∫ ∞
0

ε1/2dε

λ−1eε/τ − 1

(Ne)max =
V

4π2

(
2m

~2

)3/2

τ3/2
∫ ∞
0

x1/2dx

ex − 1

(Ne)max ≈ 2.612
( mτ

2π~2
)3/2

= 2.612nQV

Ne(τ)

N
= 2.612

nQ

n

nE =
(Ne)max

V
= 2.612nQ

τE =
2π~2

m

( n

2.612

)3/2



Thermodynamics
First Law - dU = d̄Q+ d̄W
Reversible process: dU = τdσ + d̄W

Heat Engines
A heat engine is any devices that converts
transfer of heat into work, QH/σH denotes the
heat/entropy transferred from the hot reservoir,
QC/σC denotes the heat/entropy transferred to
the cold reservoir, and W denotes the work
extracted.
Reversible Heat Engine

σH =
QH

τH
, σC =

QC

τC
Engine Efficiency the amount of work
extracted per unit of heat transferred.

η =
W

QH
=
QH −QC

QH

Carnot Efficiency the engine efficiency of a
reversible heat engine.

ηc = 1−
QC

QH
= 1−

τC

τH

The engine efficiency of an engine is less than or
equal to the carnot efficiency.

η ≤ ηc,
(
QC

QH

)
real

≥
(
τC

τH

)
rev

Carnot Cycle Counterclockwise = Heat
Engine, Clockwise = Refrigerator

1. Isothermal expansion from σL to σH .

2. Isoentropic expansion from τH to τC .

3. Isothermal compression from σH to σL.

4. Isoentropic compression from τC to τH .

Refrigerators
A refrigerator is any device that converts work
into transfer of heat, QH/σH denotes the
heat/entropy transferred to the hot reservoir,
QC/σC denotes the heat/entropy transferred
from the cold reservoir, and W denotes the work
used.
Reversible Refrigerator

σH =
QH

τH
, σC =

QC

τC

Coefficient of Performance the amount of
heat transferred per unit of work used.

γ =
QC

W
=

QC

QH −QC
Carnot Coefficient of Performance the
coefficient of performance of a reversible
refrigerator.

γc =
1

QH
Qc
− 1

=
1

τH
τC
− 1

=
τC

τH − τC

The coefficient of performance of a refrigerator is
less than or equal to the carnot coefficient of
performance.

γ ≤ γc
(
QH

QC

)
real

≥
(
τH

τC

)
rev

Types of Work
Irreversible Process

dbarWirr > d̄Wrev

d̄Qirr < d̄Qrev

Isothermal Work
d̄W ≥ dF , (= for reversible)
Effective Work

d̄W ′ = d̄W − d̄Wmech

Gibbs Free Energy
minimized at equilibrium for a system in the
isothermal–isobaric ensemble.

G = U − τσ + PV

Reversible Processes: d̄W ′ = dG

σ = −
(
∂G

∂τ

)
P,N

V = −
(
∂G

∂P

)
τ,N

µ = −
(
∂G

∂N

)
τ,P

Enthalpy
minimized at equilibrium for a system at
constant pressure.

H = U + PV

Reversible Processes: d̄W ′ = dH − dQ

τ =

(
∂H

∂σ

)
P,N

V =

(
∂H

∂P

)
σ,N

µ =

(
∂H

∂N

)
σ,P

Chemical Reactions
The Gibbs free energy can be written in terms of
the chemical potential and particles number.

G = Nµ

Total Gibbs Free Energy

G =
∑
j

Njµj

Chemical Equation Number ν is the sign
and magnitude of dN relative to the other
components of the reaction. For products ν < 0
and for reactants ν > 0.
Chemical Equilibrium∑

j

dNjµj = 0 = dG

∑
j

νjµj = 0

Ideal Gas Model

µi = τ(lognj − log cj)

cj = nQ,jzj,int

Law of Mass Action K(τ) only depend on τ .

K(τ) =
∏
j

n
νj
j =

∏
j

n
νj
Q,jZ

νj
int,j

K(τ) =
∏
j

n
νj
Q,je

−νjF intj /τ
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