Quantum Mechanics II
 from the context of the courses
 PHY 851-852: Quantum Mechanics

Kaedon Cleland-Host

March 12, 2023

Contents

0.1 The SI System 2
0.2 Why make a second book? 3
0.3 Stern-Gerlach Experiments 3
1 Quantum Systems 4
1.1 Axioms of Quantum Mechanics 4
1.2 Ket Space 4
1.3 Operators 5
1.4 Bases and Matrix Representation 5
1.5 Eigenvalues and Eigenvectors 6
1.6 Expectation Value and Uncertainty 6
1.6.9 The Uncertainty Principle 6
1.7 Spin-1/2 System 7
2 Continuous Ket Space 8
2.1 Continuous Inner Products 8
2.2 Multidimensional Continuous Inner Products 8
2.3 Position and Momentum Operators 9
2.3.7 The Canonical Commutation Relation 9
2.3.8 The Heisenburg Uncertainty Relation. 9
2.3.12 Fourier Transform 9
2.4 Multidimensional Position and Momentum Operators 10
2.4.9 Multidimensional Fourier Transform 10
3 Time Evolution 11
3.1 Schrödinger's Equation 11
3.2 Time Independent Schrödinger's equation 11
3.3 Spin-1/2 System in a Magnetic Field 12
3.4 Time Dependent Operators 12
3.5 Simple Harmonic Oscillator 13
3.5.5 Raising and Lowering Operators 13
3.5.15 Hermite polynomials 14
3.5.20 Time Dependent Simple Harmonic Oscillator 14
3.6 Finite Square Well 15
3.7 Delta Function Potential 16
4 Flux and Continuity 17
4.1 Probability Density 17
4.2 Scattering of a Potential Step 17
4.3 Resonance in a Finite Square Well 18
4.3.11 The Ramsaur-Townzend Effect 18
5 Quantum Electrodynamics 19
5.1 Classical Electrodynamics 19
5.1.4 The Ramsaur-Townzend Effect 19
5.1.8 The Gauge Invariance Theorem 19
5.2 Quantum Electrodynamics. 20
5.2.4 The Continuity Equation for Electrodynamics 20
5.3 Aharanov-Bohn Effect 20
6 Angular Momentum 21
6.1 Rotations and Angular Momentum 21
6.2 General Angular Momentum 22
6.3 Coupling of Angular Momentum 23
7 Hydrogen-Like Systems 24
7.1 Radial Solution 24
7.2 Angular Solution 24
7.2.2 Runge-Lenz Vector 24
7.3 3D Harmonic Oscillator 24
8 Symmetry 25
8.1 Symmetry Operators 25
8.2 Parity 25
8.3 Time Reversal. 26
8.3.5 Wigner's Theorem 26
9 Time-Independent Approximation Methods 27
9.1 Non-degenerate Time-Independent Perturbation Theory 27
9.2 Degenerate Time-Independent Perturbation theory 28
9.3 The Stark Effect 28
9.4 The Zeeman Effect 28
9.4.3 Week Field Limit 28
9.4.6 Strong Field Limit 29
9.5 Fine Structure 29
9.6 Spin Orbit Coupling 29
9.6.4 The Darwin Term 29
9.7 Hyperfine Structure 29
9.8 Variational Theory 30
10 Time-Dependent Approximation Methods 31
10.1 Time-Dependent Perturbation Theory 31
10.2 Constant Perturbation 31

0.1 The SI System

In physics it's often important to have precisely defined units for the purposes of making very accurate measurements or simply having a coherent unit system. It's possible to derive all necessary units from five measurements of length, mass, time, current, and temperature. The standard SI units for these properties are listed bellow:

Type	Unit	Definition
Length	Meter (m)	Length of distance light in a vacuum travels in $\frac{1}{2999792458}$ seconds
Mass	Kilogram (kg)	Defined by fixing the Planck's constant $h=6.62607015 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
Time	$\operatorname{Second}(\mathrm{s})$	Defined by fixing the ground-state hyperfine transition frequency of the caesium-133
		atom, to be $9192631770 \mathrm{~s}^{-1}$
Current	Ampere (A)	Defined by fixing the charge of an electron as $1.602176634 \times 10^{-19} \mathrm{~A} \cdot \mathrm{~s}$
Temperature	Kelvin (K)	Defined by fixing the value of the Boltzmann constant k to $1.380649 \times 10^{-23} \mathrm{~kg} \cdot \mathrm{~m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$

Common prefixes are listed bellow:

Prefix	Symbol	Definition
mega	M	10^{6}
kilo	k	10^{3}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}

Additionally, the following are defined constants:

Symbol	Definition
\hbar	$\hbar=\frac{h}{2 \pi} \approx 1.0546 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
e	Charge of an electron $e=1.602176634 \times 10^{-19} \mathrm{C}$

0.2 Why make a second book?

I've found that in the course of study it is incredibly difficult to make a universal reference book across classes. Maybe that is something I will make in the future. Until I know the exact topics that are covered in this course and the depth at which they are covered, I will keep the two books separate to make studying for the current course simpler.

Another major difference between these two books is the notation. The first book used strictly Schrödinger notation. With the hope of standardizing notation and consistently representing quantum systems, this book will strive to use Heisenberg notation.

0.3 Stern-Gerlach Experiments

The Stern-Gerlach experiments are a great example of a system that cannot be accurately described by classical mechanics.
Definition 0.3.1. Recall from classical mechanics that Classical Magnetic Moment is defined using the following formula

$$
\begin{align*}
\mu & =\frac{q}{2 m} \mathbf{L} \tag{0.3.1}\\
\mathbf{L} & =r m v \tag{0.3.2}
\end{align*}
$$

r is radius, m is mass, v is tangential velocity, q is charge, \mathbf{L} is angular momentum, and μ is magnetic moment.
Definition 0.3.3. Electron, Protons, and Neutrons all have an intrinsic angular momentum called spin denoted \mathbf{S}.
Definition 0.3.4. Electrons, Protons, and Neutrons also have an intrinsic magnetic moment defined by

$$
\begin{equation*}
\mu=g \frac{q}{2 m} \mathbf{S} \tag{0.3.4}
\end{equation*}
$$

g is the dimensionless gyroscopic ratio or g-factor which can be derived using quantum mechanics.

Figure 1: Diagram of the Stern-Gerlach experiment
The first Stern-Gerlach experiment seeks to measure the magnetic moment of the valence electron. A silver atom has 47 electrons and 47 protons. The magnetic moments depends on the inverse of mass, so we can neglect heavy protons and neutrons. Silver has an electron configuration of $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 4 d^{10} 5 s^{1}$, so the only electron that contributes to the magnetic moment is the valence electron $5 s^{1}$. Knowing this we expect the magnetic moment of the silver atom to be

$$
\begin{equation*}
\mu=-g_{e} \frac{e}{2 m_{e}} \mathbf{S} \tag{0.3.5}
\end{equation*}
$$

Following the laws of electromagnetism the force in the z direction is

$$
\begin{equation*}
F_{z}=-g_{e} \frac{e}{2 m_{e}} S_{z} \frac{\partial B_{z}}{\partial z} \tag{0.3.6}
\end{equation*}
$$

The deflection of the beam is therefore a measurement of the spin of the valence electron of the silver atoms in the z-direction. Classically, we would expect the magnetic moment to be aligned in random directive and to observe a continuous range of deflection. Instead we observe two distinct magnetic moments. The magnitudes of these deflections are consistent with the spins of

$$
\begin{equation*}
S_{z}= \pm \frac{\hbar}{2} \tag{0.3.7}
\end{equation*}
$$

This is called quantization of the electron's spin angular momentum component. The factor $\frac{1}{2}$ in the equation is why we refer to electrons as having spin-1/2.

Chapter 1

Quantum Systems

This chapter will outline our system of notation and the fundamental concepts of quantum mechanics.

1.1 Axioms of Quantum Mechanics

Axiom 1. The state of any quantum system can be represented as a ket in a complex ket space.
Axiom 2. Any measurement on a quantum system can be represented as Hermitian operator X where the eigenvalues of X represent the possible outcomes.

1.2 Ket Space

Definition 1.2.1. A ket denoted $|\alpha\rangle$ is an element of a ket space.
Definition 1.2.2. A ket space K is a set of kets equipped with addition + , and complex scalar multiplication such that the following properties hold for any three kets $|\alpha\rangle,|\beta\rangle,|\gamma\rangle \in K$ and complex scalar $z, y \in \mathbb{C}$.

- Associativity $|\alpha\rangle+(|\beta\rangle+|\gamma\rangle)=(|\alpha\rangle+|\beta\rangle)+|\gamma\rangle$.
- Commutativity $|\alpha\rangle+|\beta\rangle=|\beta\rangle+|\alpha\rangle$
- Identity $\exists|\emptyset\rangle \in K$ such that $|\alpha\rangle+|\emptyset\rangle=|\alpha\rangle$.
- Inverse $|\alpha\rangle-|\alpha\rangle=|\emptyset\rangle$.
- Compatibility $z(y|\alpha\rangle)=(z y)|\alpha\rangle$.
- Identity $1|\alpha\rangle=|\alpha\rangle$.
- Distributivity $z(|\alpha\rangle+|\beta\rangle)=z|\alpha\rangle+z|\beta\rangle$ and $(z+y)|\alpha\rangle=z|\alpha\rangle+y|\beta\rangle$.

Definition 1.2.3.

Definition 1.2.4. The inner product of two kets denoted $\langle a \mid b\rangle$ is a complex number defined as the sum of the element-wise product of $|a\rangle$ and $|b\rangle$ with the following properties:

- $\langle a \mid b\rangle=\langle b \mid a\rangle^{*}$
- $\langle a \mid a\rangle \geq 0$

Definition 1.2.5. Two kets $|a\rangle$ and $|b\rangle$ are orthogonal iff $\langle a \mid b\rangle=0$
Definition 1.2.6. The norm of a ket $|a\rangle$ is $\sqrt{\langle a \mid a\rangle}$.
Definition 1.2.7. A ket $|a\rangle$ is normalized iff $\langle a \mid a\rangle=1$.
Corollary 1.2 .8 . For any ket $|a\rangle$ the ket $\frac{1}{\sqrt{\langle a \mid a\rangle}}|a\rangle$ is normalized.

1.3 Operators

Definition 1.3.1. An operator X acts on kets to produce a new ket.
Definition 1.3.2. A linear operator is an operator with the properties for any two kets $|a\rangle,|b\rangle$ and any scalar $z \in \mathbb{C}$:

- $X(|a\rangle+|b\rangle)=X|a\rangle+X|b\rangle$
- $X(z|a\rangle)=z X|a\rangle$

Corollary 1.3.3. Addition of linear operators is associative and commutative. For any linear operators $A, B, C, A+B=$ $B+A$ and $A+(B+C)=(A+B)+C$.

Corollary 1.3.4. Multiplication of linear operators is associative but not commutative. For any linear operators A, B, C, $A(B C)=(A B) C$ and in general $A B \neq B A$.
Definition 1.3.5. The Hermitian adjoint of a matrix X denoted with dagger X^{\dagger} is defined by

$$
\begin{equation*}
\langle\alpha| X^{\dagger}|\beta\rangle=(\langle\beta| X|\alpha\rangle)^{*} \tag{1.3.5}
\end{equation*}
$$

Definition 1.3.6. An operator X is a unitary operator or a symmetry operator iff $X X^{\dagger}=I$.
Definition 1.3.7. An operator X is Hermitian iff $X=X^{\dagger}$.
Corollary 1.3.8. If X is a Hermitian operator, then X has real eigenvalues and eigenvectors with different eigenvalues are orthogonal.
Definition 1.3.9. The projection operators denoted $A_{|\alpha\rangle}$ is an operator defined for any ket $|\alpha\rangle$

$$
\begin{equation*}
A_{|\alpha\rangle}=|\alpha\rangle\langle\alpha| \tag{1.3.9}
\end{equation*}
$$

1.4 Bases and Matrix Representation

Definition 1.4.1. The Kronecker delta denoted $\delta_{i j}$ for any $i, j \in \mathbb{N}$ is defined as

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \tag{1.4.1}\\ 0 & \text { if } i \neq j\end{cases}
$$

Definition 1.4.2. The Levi-Civita symbol denoted $\varepsilon_{i j k}$ for any $i, j, k \in \mathbb{N}$ is defined as

$$
\varepsilon_{i j k}=\left\{\begin{array}{cl}
+1 & \text { if }(i, j, k \text { is }(1,2,3), \text { or }(2,3,1), \text { or }(3,1,2) \tag{1.4.2}\\
-1 & \text { if }(i, j, k) \text { is }(3,2,1), \text { or }(1,3,2), \text { or }(2,1,3) \\
0 & \text { if } i=j, \text { or } i=k, \text { or } j=k
\end{array}\right.
$$

Definition 1.4.3. A basis is a set of kets $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\}$ such that any ket in the ket space can be uniquely represented as a linear combination of basis kets.
Definition 1.4.4. An orthonormal basis is a basis $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\}$ such that $\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}$.
Corollary 1.4.5. For an orthonormal basis $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\}$ the completeness relation is the identity:

$$
\begin{equation*}
\sum_{i=1}^{n}\left|e_{i}\right\rangle\left\langle e_{i}\right|=I \tag{1.4.5}
\end{equation*}
$$

Proposition 1.4.6. For any ket $|\alpha\rangle$ with a basis $\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\}$, there exists unique complex numbers $\alpha_{i} \in \mathbb{C}$ such that

$$
\begin{equation*}
|\alpha\rangle=\sum_{i=0}^{n} \alpha_{i}|\alpha\rangle, \quad\left\langle e_{i} \mid \alpha\right\rangle=\alpha_{i} \tag{1.4.6}
\end{equation*}
$$

Definition 1.4.7. We represent bras and kets as row and column vectors with respect to a basis $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\}$. For any ket $|\alpha\rangle=\sum_{i=0}^{n} \alpha_{i}|\alpha\rangle$.

$$
\text { if }|\alpha\rangle=\sum_{i=0}^{n} \alpha_{i}|\alpha\rangle, \quad\langle\alpha|=\left(\alpha_{1}^{*} \alpha_{2}^{*} \ldots \alpha_{n}^{*}\right), \quad|\alpha\rangle=\left(\begin{array}{c}
\alpha_{1} \tag{1.4.7}\\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)
$$

Definition 1.4.8. We represent operators as a matrix with respect to a basis $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\}$.

$$
X=\left(\begin{array}{ccccc}
\left\langle e_{1}\right| X\left|e_{1}\right\rangle & \left\langle e_{1}\right| X\left|e_{2}\right\rangle & \left\langle e_{1}\right| X\left|e_{3}\right\rangle & \ldots & \left\langle e_{1}\right| X\left|e_{n}\right\rangle \tag{1.4.8}\\
\left\langle e_{2}\right| X\left|e_{1}\right\rangle & \left\langle e_{2}\right| X\left|e_{2}\right\rangle & \left\langle e_{2}\right| X\left|e_{3}\right\rangle & \ldots & \left\langle e_{2}\right| X\left|e_{n}\right\rangle \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left\langle e_{n}\right| X\left|e_{1}\right\rangle & \left\langle e_{n}\right| X\left|e_{2}\right\rangle & \left\langle e_{n}\right| X\left|e_{3}\right\rangle & \ldots & \left\langle e_{n}\right| X\left|e_{n}\right\rangle
\end{array}\right)
$$

Corollary 1.4.9. Under these definitions standard vector and matrix multiplication are consistent.
Theorem 1.4.10. Given two basis $\left\{\left|a_{1}\right\rangle, \ldots,\left|a_{n}\right\rangle\right\}$ and $\left\{\left|b_{1}\right\rangle, \ldots,\left|a_{n}\right\rangle\right\}$ there exsits a unitary operator such that for any operator X_{a} written in the basis $\left\{\left|a_{1}\right\rangle, \ldots,\left|a_{n}\right\rangle\right\}$ and the same operator X_{b} written in the basis $\left\{\left|b_{1}\right\rangle, \ldots,\left|b_{n}\right\rangle\right\}$,

$$
\begin{equation*}
U=\sum_{i=1}^{n}\left\langle b_{i} \mid a_{i}\right\rangle, \quad\left|b_{i}\right\rangle=U|a\rangle, X_{b}=U^{T} X_{a} \tag{1.4.10}
\end{equation*}
$$

1.5 Eigenvalues and Eigenvectors

Definition 1.5.1. For an operator X an eigenvector is a ket $|\alpha\rangle$ such that $X|\alpha\rangle=\lambda|\alpha\rangle$ for some eigenvalue $\lambda \in \mathbb{C}$.
Definition 1.5.2. An eigenspace for an eigenvalue λ of an operator X is the set of eigenvectors with λ as an eigenvalue.
Definition 1.5.3. An eigenvalue is degenerate iff the corresponding eigenspace has more than one linearly independent eigenvector.

Definition 1.5.4. An eigenvalue is non-degenerate iff it is not degenerate.

1.6 Expectation Value and Uncertainty

Definition 1.6.1. The commutator of two operators A and B denoted $[A, B]$ is defined as

$$
\begin{equation*}
[A, B]=A B-B A \tag{1.6.1}
\end{equation*}
$$

Definition 1.6.2. The anticommutator of two operators A and B denoted $\{A, B\}$ is defined as

$$
\begin{equation*}
\{A, B\}=A B+B A \tag{1.6.2}
\end{equation*}
$$

Definition 1.6.3. Two operators A and B are compatible operators iff $[A, B]=0$.
Definition 1.6.4. Two operators A and B are incompatible operators iff $[A, B] \neq 0$.
Corollary 1.6.5. Compatible operators have the same eigenvalues and eigenvectors.
Definition 1.6.6. The expectation value of a Hermitian operator X for a state $|\psi\rangle$ denoted $\langle X\rangle$ is defined as

$$
\begin{equation*}
\langle X\rangle=\langle\psi| X|\psi\rangle=\sum_{i=1}^{n} P\left(\alpha_{i}\right) \alpha_{i} \tag{1.6.6}
\end{equation*}
$$

Definition 1.6.7. The variance of a Hermitian operator X for a state $|\psi\rangle$ denoted $\left\langle(\Delta X)^{2}\right\rangle$ is defined as

$$
\begin{equation*}
\left\langle(\Delta X)^{2}\right\rangle=\left\langle X^{2}\right\rangle-\langle X\rangle^{2}=\left\langle(X-\langle X\rangle)^{2}\right\rangle \tag{1.6.7}
\end{equation*}
$$

Definition 1.6.8. The standard deviation of a Hermitian operator X for a state $|\psi\rangle$ denoted σ_{X} is defined as

$$
\begin{equation*}
\sigma_{X}=\sqrt{\left\langle(\Delta X)^{2}\right\rangle} \tag{1.6.8}
\end{equation*}
$$

Theorem 1.6.9. The uncertainty principle states that for any two observables A and B, the following relation holds

$$
\begin{equation*}
\left\langle(\Delta A)^{2}\right\rangle\left\langle(\Delta B)^{2}\right\rangle \geq \frac{1}{4}|\langle[A, B]\rangle|^{2} \tag{1.6.9}
\end{equation*}
$$

1.7 Spin-1/2 System

The spin $1 / 2$ system is the simplist finite system in quantum mechanics it consists of single particles such as an electron with two possible quantum eigenvalues.

Definition 1.7.1. The spin- $1 / 2$ system is a 2 dimensional complex ket space where the system will collapse into either spin up or spin down in the direction of measurement. The standard basis is $\{|+\rangle,|-\rangle\}$ where $|+\rangle$ is spin up along the z-axis and

Definition 1.7.2. The S_{z}, S_{y}, S_{z} operators measure the spin along the x, y or z axis. The possible eigenvalues are $\pm \frac{\hbar}{2}$.

$$
\begin{gather*}
S_{x}=\frac{\hbar}{2}[(|+\rangle\langle-|)+(|-\rangle\langle+|)]=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \\
S_{y}=\frac{\hbar}{2}[i(|-\rangle\langle+|)-i(|+\rangle\langle-|)]=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \tag{1.7.2}\\
S_{z}=\frac{\hbar}{2}[(|+\rangle\langle+|)-(|-\rangle\langle-|)]=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{gather*}
$$

Result 1.7.3. The comutation relations for the spin operators are

$$
\begin{align*}
& {\left[S_{x}, S_{y}\right]=i \hbar S_{z}} \\
& {\left[S_{y}, S_{z}\right]=i \hbar S_{x}} \tag{1.7.3}\\
& {\left[S_{z}, S_{x}\right]=i \hbar S_{y}}
\end{align*}
$$

Definition 1.7.4. The general spin operator $S_{\hat{\mathbf{n}}}$ is defined by

$$
S_{\hat{n}}=S_{x} \sin \theta \cos \phi+S_{y} \sin \theta \sin \phi+S_{z} \cos \theta=\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \phi} \tag{1.7.4}\\
\sin \theta e^{i \phi} & -\cos \theta
\end{array}\right)
$$

for a unit vector $\hat{\mathbf{n}}$ defined by $\hat{\mathbf{n}}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$

Corollary 1.7.5. The eigenvalues and eigenvectors for the $S_{\hat{\mathbf{n}}}$ operator are

Chapter 2

Continuous Ket Space

2.1 Continuous Inner Products

Definition 2.1.1. Continuous ket space is a ket space were observables exhibit continuous eigenvalue spectra. For a continuous operator Ξ with eigenvalues ξ and eigenvectors $|\xi\rangle$ that form a complete set,

$$
\begin{equation*}
\Xi|\xi\rangle=\xi|\xi\rangle \tag{2.1.1}
\end{equation*}
$$

Definition 2.1.2. The continuous inner product in continuous space is defined using the Dirac delta function δ. The inner product of two continuous kets $|a\rangle$ and $|b\rangle$ with eigenvalues a and b of a complete continuous operator Ξ is

$$
\begin{equation*}
\langle a \mid b\rangle=\delta(a-b) \tag{2.1.2}
\end{equation*}
$$

Corollary 2.1.3. Let Ξ be a continuous operator with eigenvalue ξ and eigenvectors $|\xi\rangle$ that form a complete set. For any operator A and any kets $|\alpha\rangle$ and $|\beta\rangle$, the continuous inner products are

$$
\begin{equation*}
|a\rangle=\int|\xi\rangle\langle\xi| d \xi, \quad\langle\beta \mid \alpha\rangle=\int\langle\beta \mid \xi\rangle\langle\xi \mid \alpha\rangle d \xi, \quad\langle\beta| A|\alpha\rangle=\int\langle\beta \mid \xi\rangle\langle\xi| A|\alpha\rangle d \xi \tag{2.1.3}
\end{equation*}
$$

Corollary 2.1.4. The probability of measuring a complete continuous operator Ξ between a region of $a \leq \xi \leq b$ for any ket $|\alpha\rangle$ is given by the integral

$$
\begin{equation*}
|\langle a \leq \xi \leq b \mid \alpha\rangle|^{2}=\int_{a}^{b}|\langle\xi \mid \alpha\rangle|^{2} d \xi=\int_{a}^{b}\langle\alpha \mid \xi\rangle\langle\xi \mid \alpha\rangle d \xi \tag{2.1.4}
\end{equation*}
$$

2.2 Multidimensional Continuous Inner Products

Definition 2.2.1. Multidimensional continuous ket space is defined as a simultaneous eigenvectors of coninuous ket spaces. The multidimensional continuous operator $\boldsymbol{\Xi}$ is defined in terms of the component continuous operators $\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}$ with eigenvalues $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ and eigenvalues $\left|\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\rangle$ that form a complete set.

$$
\begin{gather*}
|\boldsymbol{\xi}\rangle=\left|\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\rangle \\
\Xi_{1}|\boldsymbol{\xi}\rangle=\xi_{1}|\boldsymbol{\xi}\rangle \quad, \quad \Xi_{2}|\boldsymbol{\xi}\rangle=\xi_{2}|\boldsymbol{\xi}\rangle \quad, \quad \ldots \quad, \quad \Xi_{n}|\boldsymbol{\xi}\rangle=\xi_{n}|\boldsymbol{\xi}\rangle \tag{2.2.1}
\end{gather*}
$$

Definition 2.2.2. The multidimensional continuous inner product in multidimensional continuous is defined using the Dirac delta function δ. The inner product of two continuous kets $|\alpha\rangle$ and $|\beta\rangle$ with eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ of a complete multidimensional continuous operator $\boldsymbol{\Xi}$ is

$$
\begin{equation*}
\langle a \mid b\rangle=\delta^{n}(\boldsymbol{\alpha}-\boldsymbol{\beta})=\delta\left(\alpha_{1}-\beta_{1}\right) \delta\left(\alpha_{2}-\beta_{2}\right) \ldots \delta\left(\alpha_{n}-\beta_{n}\right) \tag{2.2.2}
\end{equation*}
$$

Corollary 2.2.3. Let $\boldsymbol{\Xi}$ be a multidimensional with eigenvalues $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ and eigenvalues $\left|\xi_{1}\right\rangle,\left|\xi_{2}\right\rangle, \ldots,\left|\xi_{n}\right\rangle$ that form a complete set. For any operator A and any kets α and $|\beta\rangle$, the multidimensional continuous inner products are

$$
\begin{equation*}
|\alpha\rangle=\int|\boldsymbol{\xi}\rangle\langle\boldsymbol{\xi} \mid \alpha\rangle d^{n} \boldsymbol{\xi}, \quad\langle\beta \mid \alpha\rangle=\int\langle\beta \mid \boldsymbol{\xi}\rangle\langle\boldsymbol{\xi} \mid \alpha\rangle d^{n} \boldsymbol{\xi}, \quad\langle\beta| A|\alpha\rangle=\int\langle\beta \mid \boldsymbol{\xi}\rangle\langle\boldsymbol{\xi}| A|\alpha\rangle d^{n} \boldsymbol{\xi} \tag{2.2.3}
\end{equation*}
$$

2.3 Position and Momentum Operators

Definition 2.3.1. The position operator X (also written x) with eigenvalues x and eigenvectors $|x\rangle$ that form a complete set.

$$
\begin{equation*}
X|x\rangle=x|x\rangle \tag{2.3.1}
\end{equation*}
$$

Definition 2.3.2. The position space wavefunction of a ket $|\psi\rangle$ denoted $\psi(x)$ is the inner product

$$
\begin{equation*}
\psi(x)=\langle x \mid \psi\rangle \tag{2.3.2}
\end{equation*}
$$

Definition 2.3.3. The translation operator U is a unitary operator that translates the eigenvalues $|x\rangle$ of X to the eigenvalue $|x+\Delta x\rangle$.

$$
\begin{equation*}
U(\Delta x)|x\rangle=|x+\Delta x\rangle \tag{2.3.3}
\end{equation*}
$$

Proposition 2.3.4. The infinitesimal translation $U(d x)$ is generated by a Hermitian operator K.

$$
\begin{equation*}
U(d x)=I-i K d x, \quad[X, K]=i \tag{2.3.4}
\end{equation*}
$$

Definition 2.3.5. The momentum operator p is defined in terms of the generator of translation.

$$
\begin{equation*}
P=\hbar K \tag{2.3.5}
\end{equation*}
$$

Definition 2.3.6. The momentum space wavefunction of a ket $|\psi\rangle$ denoted $\tilde{\psi}(x)$ is the inner product

$$
\begin{equation*}
\tilde{\psi}(p)=\langle p \mid \psi\rangle \tag{2.3.6}
\end{equation*}
$$

Theorem 2.3.7. The canonical commutation relation states that the commutator between X and P is

$$
\begin{equation*}
[X, P]=i \hbar \tag{2.3.7}
\end{equation*}
$$

Corollary 2.3.8. The Heisenburg uncertainty relation is the uncertainty principle applied to X and P

$$
\begin{equation*}
<(\Delta X)^{2}><(\Delta P)^{2}>=\sigma_{X} \sigma_{P} \geq \frac{\hbar}{2} \tag{2.3.8}
\end{equation*}
$$

Theorem 2.3.9. The finite translation operator can be written in terms of the momentum operator

$$
\begin{equation*}
U(\Delta x)=\lim _{N \rightarrow \infty}\left(I-\frac{i P}{\hbar} \frac{\Delta x}{N}\right)^{N}=e^{-i P \Delta x / \hbar} \tag{2.3.9}
\end{equation*}
$$

Theorem 2.3.10. P in the position basis and X in the momentum basis are derivatives.

$$
\begin{gather*}
\langle x| P|\psi\rangle=-i \hbar \frac{\partial}{\partial x}\langle x \mid \psi\rangle \\
\langle\phi| P|\psi\rangle=\int\langle\psi \mid x\rangle(-i \hbar) \frac{\partial}{\partial x}\langle x \mid \psi\rangle d x=\int \phi^{*}(x)(-i \hbar) \frac{\partial}{\partial x} \psi(x) d x \\
\langle p| X|\psi\rangle=i \hbar \frac{\partial}{\partial p}\langle p \mid \psi\rangle \tag{2.3.10}\\
\langle\phi| X|\psi\rangle=\int\langle\psi \mid p\rangle i \hbar \frac{\partial}{\partial p}\langle p \mid \psi\rangle d p=\int \phi^{*}(p) i \hbar \frac{\partial}{\partial p} \psi(p) d p
\end{gather*}
$$

Theorem 2.3.11. The inner product $\langle x \mid p\rangle$ can be written as an exponential.

$$
\begin{equation*}
\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} \tag{2.3.11}
\end{equation*}
$$

Corollary 2.3.12. The position space wavefunction and momentum space wavefunction are related to each other by the Fourier transform.

$$
\begin{align*}
\psi(x) & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} \tilde{\psi}(p) d p \\
\tilde{\psi}(x) & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \hbar}} e^{-i p x / \hbar} \psi(x) d x \tag{2.3.12}
\end{align*}
$$

2.4 Multidimensional Position and Momentum Operators

Definition 2.4.1. The multidimensional position operator \mathbf{X} (also written \mathbf{x}) is defined in terms of the component position operators $X_{1}, X_{2}, \ldots, X_{n}$ with eigenvalues $x_{1}, x_{2}, \ldots, x_{n}$ and eigenvectors $\left|x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ that form a complete set.

$$
\begin{gather*}
|\mathbf{x}\rangle=\left|x_{1}, x_{2}, \ldots, x_{n}\right\rangle \\
X_{1}|\mathbf{x}\rangle=x_{1}|\mathbf{x}\rangle \quad, \quad X_{2}|\mathbf{x}\rangle=x_{2}|\mathbf{x}\rangle \quad, \quad \ldots \quad, \quad X_{n}|\mathbf{x}\rangle=x_{n}|\mathbf{x}\rangle \tag{2.4.1}
\end{gather*}
$$

In 3d space, the X_{1}, X_{2}, X_{3} operators are commonly written X, Y, Z (also written x, y, z).
Definition 2.4.2. The multidimensional translation operator $U(\boldsymbol{\Delta} \mathbf{x})$ for a vector $\boldsymbol{\Delta} \mathbf{x}=\left(\Delta x_{1}, \Delta x_{2}, \ldots, \Delta x_{n}\right)$ is a unitary operator that translates the eigenvalues $|\mathbf{x}\rangle$ of \mathbf{X} to the eigenvalue $|\mathbf{x}+\boldsymbol{\Delta} \mathbf{x}\rangle$.

$$
\begin{equation*}
U(\boldsymbol{\Delta} \mathbf{x})|\mathbf{x}\rangle=|\mathbf{x}+\boldsymbol{\Delta} \mathbf{x}\rangle=\left|x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, \ldots, x_{n}+\Delta x_{n}\right\rangle \tag{2.4.2}
\end{equation*}
$$

Proposition 2.4.3. The infinitesimal multidimensional translation $\mathbf{U}(\mathbf{d x})$ is generated by a multidimensional operator \mathbf{K} with Hermitian component operators $K_{1}, K_{2}, \ldots, K_{n}$.

$$
\begin{equation*}
\mathbf{U}(\mathbf{d} \mathbf{x})=I-i \mathbf{K} \cdot \mathbf{d} \mathbf{x}=I-i K_{1} d x_{1}-i K_{2} d x_{2}-\cdots-i K_{n} d x_{n} \tag{2.4.3}
\end{equation*}
$$

Definition 2.4.4. The multidimensional momentum operator \mathbf{P} (also written \mathbf{p}) is defined in terms of the component momentum operators $P_{1}, P_{2}, \ldots, P_{n}$ which are defined in terms of the generators of translation.

$$
\begin{gather*}
\mathbf{P}=\hbar \mathbf{K} \\
P_{1}=\hbar K_{1} \quad, \quad P_{2}=\hbar K_{2} \quad, \quad \cdots \quad, \quad P_{n}=\hbar K_{n} \tag{2.4.4}
\end{gather*}
$$

In 3 d space, the P_{1}, P_{2}, P_{3} operators are commonly written P_{z}, P_{y}, P_{z} also written $\left(p_{x}, p_{y}, p_{z}\right)$.
Proposition 2.4.5. The commutation relations between components of \mathbf{X} and \mathbf{P} are

$$
\begin{equation*}
\left[X_{i}, X_{j}\right]=0 \quad, \quad\left[P_{i}, P_{j}\right]=0 \quad, \quad\left[X_{i}, P_{j}\right]=i \hbar \delta_{i j} \tag{2.4.5}
\end{equation*}
$$

Theorem 2.4.6. The multidimensional finite translation operator can be written in terms of the momentum operator

$$
\begin{equation*}
\mathbf{U}(\boldsymbol{\Delta} \mathbf{x})=\lim _{N \rightarrow \infty}\left(I-\frac{i \mathbf{P}}{\hbar} \cdot \frac{\Delta \mathbf{x}}{N}\right)^{N}=e^{-i \mathbf{P} \cdot \boldsymbol{\Delta} \mathbf{x} / \hbar}=e^{-i\left(P_{1} \Delta x_{1}+P_{2} \Delta x_{2}+\cdots+\Delta x_{n}\right) / \hbar} \tag{2.4.6}
\end{equation*}
$$

Theorem 2.4.7. \mathbf{P} in the position basis and \mathbf{X} in the momentum basis are gradients.

$$
\begin{gather*}
\langle\mathbf{x}| \mathbf{P}|\psi\rangle=-i \hbar \nabla_{\mathbf{x}}\langle\mathbf{x} \mid \psi\rangle \\
\langle\varphi| \mathbf{P}|\psi\rangle=\int\langle\psi \mid \mathbf{x}\rangle(-i \hbar) \nabla_{\mathbf{x}}\langle\mathbf{x} \mid \psi\rangle d^{n} \mathbf{x}=\int \phi^{*}(\mathbf{x})(-i \hbar) \nabla_{\mathbf{x}} \psi(\mathbf{x}) d^{n} \mathbf{x} \\
\langle\mathbf{p}| \mathbf{X}|\psi\rangle=i \hbar \nabla_{\mathbf{p}}\langle\mathbf{p} \mid \psi\rangle \tag{2.4.7}\\
\langle\varphi| \mathbf{X}|\psi\rangle=\int\langle\psi \mid \mathbf{p}\rangle i \hbar \nabla_{\mathbf{p}}\langle\mathbf{p} \mid \psi\rangle d^{n} \mathbf{p}=\int \phi^{*}(\mathbf{p}) i \hbar \nabla_{\mathbf{p}} \psi(\mathbf{p}) d^{n} \mathbf{p}
\end{gather*}
$$

Theorem 2.4.8. The inner product $\langle\mathbf{x} \mid \mathbf{p}\rangle$ can be written as an exponential.

$$
\begin{equation*}
\langle\mathbf{x} \mid \mathbf{p}\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{i \mathbf{p} \cdot \mathbf{x} / \hbar} \tag{2.4.8}
\end{equation*}
$$

Corollary 2.4.9. The position space wavefunction and momentum space wavefunction are related to each other by the Fourier transform.

$$
\begin{align*}
\psi(\mathbf{x}) & =\int \frac{1}{\sqrt{2 \pi \hbar}} e^{i \mathbf{p} \cdot \mathbf{x} / \hbar} \tilde{\psi}(\mathbf{p}) d^{n} \mathbf{p} \\
\tilde{\psi}(\mathbf{p}) & =\int \frac{1}{\sqrt{2 \pi \hbar}} e^{-i \mathbf{p} \cdot \mathbf{x} / \hbar} \psi(\mathbf{x}) d^{n} \mathbf{x} \tag{2.4.9}
\end{align*}
$$

Chapter 3

Time Evolution

3.1 Schrödinger's Equation

Definition 3.1.1. The time evolution operator $U(t)$ is the continuous unitary operator that describes how a system evolves with time t.

$$
\begin{gather*}
|\psi\rangle(t)=U(t)|\psi\rangle \\
U^{\dagger}(t) U(t)=I \tag{3.1.1}\\
\lim _{t_{1} \rightarrow t_{0}} U\left(t_{1}\right)-U\left(t_{0}\right)=0
\end{gather*}
$$

Definition 3.1.2. The generator of time evolution is the Hermitian operator Ω that generates U for an infinitesimal $d t$

$$
\begin{equation*}
U(d t)=I-i \Omega d t \tag{3.1.2}
\end{equation*}
$$

Definition 3.1.3. The hamiltonian H is defined in terms of the generator of time evolution

$$
\begin{equation*}
H=\hbar \Omega \tag{3.1.3}
\end{equation*}
$$

Result 3.1.4. Schrödinger's equation in terms of $U(t)$ is

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} U(t)=H U(t) \tag{3.1.4}
\end{equation*}
$$

3.2 Time Independent Schrödinger's equation

Result 3.2.1. The time independent Schrödinger's equation for a time independent H is

$$
\begin{gather*}
H\left|E_{i}\right\rangle=E_{i}\left|E_{i}\right\rangle \\
U(t)=e^{-i H t / \hbar} \tag{3.2.1}
\end{gather*}
$$

Result 3.2.2. The time independent solution to any quantum system $|\psi\rangle$ with a time independent Hamiltonian where $|\psi\rangle=\sum_{i} c_{i}\left|E_{i}\right\rangle$ is

$$
\begin{equation*}
U(t)|\psi\rangle=\sum_{i} c_{i} e^{-i E_{i} t / \hbar}\left|E_{i}\right\rangle \tag{3.2.2}
\end{equation*}
$$

Definition 3.2.3. A stationary state is a eigenstate of the Hamiltonian.
Result 3.2.4. The expectation values of energy for a time independent Hamiltonian does not depend on time and the expectation value of any operator A for a stationary state $\left|E_{i}\right\rangle$ does not depend on time.

$$
\begin{gather*}
\langle H(t)\rangle=\langle\psi| U^{\dagger}(t) H U(t)|\psi\rangle=\langle\psi| H|\psi\rangle=\langle H\rangle \\
\langle A(t)\rangle=\left\langle E_{i}\right| U^{\dagger}(t) A U(t)\left|E_{i}\right\rangle=\left\langle E_{i}\right| A\left|E_{i}\right\rangle=\langle A\rangle \tag{3.2.4}
\end{gather*}
$$

Result 3.2.5. The general time dependence of expectation value of any operator A for any quantum system $|\psi\rangle$ with a time independent Hamiltonian where $|\psi\rangle=\sum_{i} c_{i}\left|E_{i}\right\rangle$ for energy eigenstates $\left|E_{i}\right\rangle$ is

$$
\begin{equation*}
\langle A\rangle(t)=\sum_{i j} c_{i}^{*} c_{j} e^{-i\left(E_{j}-E_{i}\right) t / \hbar}\left\langle E_{i}\right| A\left|E_{j}\right\rangle \tag{3.2.5}
\end{equation*}
$$

3.3 Spin-1/2 System in a Magnetic Field

Definition 3.3.1. The Hamiltonian for a spin-1/2 system with a magnetic field pointing in the Z-direction is

$$
\begin{equation*}
H=-\mu \cdot \mathbf{B}=g_{e} \frac{e}{2 m_{e}} \mathbf{S} \cdot B \approx \frac{-e B}{m c} S_{z} \tag{3.3.1}
\end{equation*}
$$

Definition 3.3.2. The cyclotron frequency denoted ω is the frequency of oscillation of the spin- $1 / 2$ system in a magnetic field defined by

$$
\begin{equation*}
\omega=\frac{|e| B}{m c} \tag{3.3.2}
\end{equation*}
$$

Result 3.3.3. The time dependence of the spin- $1 / 2$ system is given by

$$
\begin{equation*}
U(t)|\psi\rangle=c_{+} e^{-i \omega t / 2}|+\rangle+c_{-} e^{i \omega t / 2}|-\rangle \tag{3.3.3}
\end{equation*}
$$

3.4 Time Dependent Operators

Definition 3.4.1. The time dependence of an operator A is defined in terms of the time translation operator $U(t)$ by

$$
\begin{equation*}
A(t)=U^{\dagger}(t) A U(t) \tag{3.4.1}
\end{equation*}
$$

Result 3.4.2. The heisenberg equations of motion describe how operators evolve with time

$$
\begin{gather*}
\frac{\partial U(t)}{\partial t}=\frac{1}{i \hbar} H U \\
\frac{\partial U(t)}{\partial t}=\frac{1}{-i \hbar} U^{\dagger} H \tag{3.4.2}\\
\frac{\partial A(t)}{\partial t}=\frac{1}{i \hbar}[A(t), H]
\end{gather*}
$$

Result 3.4.3. For eigenvalues $\left|a_{i}(t)\right\rangle$ of a time dependent operator $A(t)$,

$$
\begin{gather*}
\left|a_{i}(t)\right\rangle=U^{\dagger}(t)\left|a_{i}(0)\right\rangle \\
i \hbar \frac{\partial}{\partial t}\left|a_{i}(t)\right\rangle=-H\left|a_{i}(t)\right\rangle \tag{3.4.3}
\end{gather*}
$$

Proposition 3.4.4. For any function F the following commutation relations hold.

$$
\begin{align*}
{[X, F(P)] } & =i \hbar \frac{\partial}{\partial P} F(P) \\
{[P, F(X)] } & =-i \hbar \frac{\partial}{\partial X} F(X) \tag{3.4.4}
\end{align*}
$$

Theorem 3.4.5. Ehrenfest's Theorem states that the free particle Hamiltonian follows the laws of classical mechanics.

$$
\begin{gather*}
H=\frac{\mathbf{P}^{2}}{2 m}+V(\mathbf{X}) \\
\frac{d X_{i}}{d t}=\frac{P_{u}}{m} \\
\frac{d^{2} X_{i}}{d t^{2}}=\frac{1}{m} \frac{d p_{i}}{d t} \tag{3.4.5}\\
m \frac{d^{2} \mathbf{X}}{d t^{2}}=-\nabla V(\mathbf{X}) \\
m \frac{\partial^{2}\langle\mathbf{x}\rangle}{\partial t^{2}}=\frac{\partial\langle\mathbf{p}\rangle}{\partial t}=-\langle\nabla V(\mathbf{x})\rangle
\end{gather*}
$$

Proposition 3.4.6. The position uncertainty relation states that $\sigma_{x}(t) \geq \frac{\hbar t}{2 \sigma_{x}(0) m}$
Theorem 3.4.7. The virial theorem state that for a

3.5 Simple Harmonic Oscillator

Definition 3.5.1. The simple harmonic oscillator is a quantum system defined by the following Hamiltonian.

$$
\begin{equation*}
H=\frac{P^{2}}{2 m}+\frac{1}{2} k X^{2} \tag{3.5.1}
\end{equation*}
$$

Result 3.5.2. The Schrödinger equation for the harmonic oscillator is

$$
\begin{gather*}
H|\psi\rangle=E|\psi\rangle \\
\left(\frac{P^{2}}{2 m}+\frac{1}{2} k X^{2}\right)|\psi\rangle=E|\psi\rangle \tag{3.5.2}
\end{gather*}
$$

Result 3.5.3. The position and momentum space Schrödinger equation for the harmonic oscillator is

$$
\begin{gather*}
\left(\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k X^{2}\right) \psi(x)=E \psi(x) \tag{3.5.3}\\
\left(\frac{P^{2}}{2 m}-\frac{\hbar^{2} k}{2} \frac{d^{2}}{d p^{2}}\right) \tilde{\psi}(p)=E \tilde{\psi}(p)
\end{gather*}
$$

Definition 3.5.4. The angular frequency for the harmonic oscillator is the frequency $\omega=\sqrt{\frac{k}{m}}$.

3.5.5 Raising and Lowering Operators

Definition 3.5.6. The lowering operator or the annihilation operator a is defined

$$
\begin{equation*}
a=\sqrt{\frac{m \omega}{2 \hbar}} X+\frac{i P}{\sqrt{2 m \hbar \omega}} \tag{3.5.6}
\end{equation*}
$$

Definition 3.5.7. The raising operator or the creation operator a^{\dagger} is defined

$$
\begin{equation*}
a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}} X-\frac{i P}{\sqrt{2 m \hbar \omega}} \tag{3.5.7}
\end{equation*}
$$

Result 3.5.8. The harmonic oscillator Hamiltonian can be written in terms of the raising and lowering operators.

$$
\begin{equation*}
H=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right) \tag{3.5.8}
\end{equation*}
$$

Definition 3.5.9. The quantization operator N is defined by

$$
\begin{gather*}
N=a^{\dagger} a \\
N|n\rangle=n|n\rangle \tag{3.5.9}
\end{gather*}
$$

Proposition 3.5.10. The following commutation relations hold for the harmonic oscillator

$$
\begin{gather*}
{\left[a, a^{\dagger}\right]=1} \\
{[N, a]=\left[a^{\dagger} a, a\right]=\left[a^{\dagger}, a\right] a=-a} \tag{3.5.10}\\
{\left[N, a^{\dagger}\right]=\left[a^{\dagger} a, a^{\dagger}\right]=a^{\dagger}\left[a, a^{\dagger}\right]=a^{\dagger}}
\end{gather*}
$$

Result 3.5.11. For eigenstates $|n\rangle$ of H the raising and lowering operators have the following properties

$$
\begin{gather*}
|n\rangle=\frac{1}{\sqrt{n}}\left(a^{\dagger}\right)^{n}|0\rangle \\
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle \tag{3.5.11}\\
a|n\rangle=\sqrt{n}|n-1\rangle \\
\left.\langle n| N|n\rangle=\langle n| a^{\dagger} a|n\rangle=|a| n\right\rangle\left.\right|^{2}>=0
\end{gather*}
$$

Result 3.5.12. The harmonic oscillator energy eigenvalues and eigenstates are

$$
\begin{gather*}
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \\
x_{0}=\sqrt{\frac{\hbar}{m \omega}} \tag{3.5.12}\\
\langle x \mid 0\rangle=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-x^{2} / 2 x_{0}^{2}} \\
\langle x \mid n\rangle=\frac{1}{\sqrt{n!}}\left(\frac{1}{\sqrt{2} x_{0}}\right)^{n}\left(x-x_{0}^{2} \frac{d}{d x}\right)^{n}\langle x \mid 0\rangle
\end{gather*}
$$

Result 3.5.13. The operators X and P can be written in terms of the raising and lowering operators

$$
\begin{align*}
X & =\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right) \\
P & =i \sqrt{\frac{m \hbar \omega}{2}}\left(a^{\dagger}-a\right) \tag{3.5.13}
\end{align*}
$$

Result 3.5.14. For two eigenstates $|n\rangle$ and $\left|n^{\prime}\right\rangle$ of the harmonic oscillator,

$$
\begin{align*}
\left\langle n^{\prime}\right| X|n\rangle & =\sqrt{\frac{\hbar}{2 m w}}\left(\delta_{n^{\prime}, n-1} \sqrt{n}+\delta_{n^{\prime}, n+1} \sqrt{n+1}\right) \tag{3.5.14}\\
\left\langle n^{\prime}\right| P|n\rangle & =i \sqrt{\frac{m \hbar \omega}{2}}\left(-\delta_{n^{\prime}, n-1} \sqrt{n}+\delta_{n^{\prime}, n+1} \sqrt{n+1}\right)
\end{align*}
$$

3.5.15 Hermite polynomials

Definition 3.5.16. The Hermite polynomials are the series of polynomials defined by

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{\partial^{n}}{d x^{n}} e^{-x^{2}} \tag{3.5.16}
\end{equation*}
$$

Corollary 3.5.17. The Hermite polynomials can also be derived recursively.

$$
\begin{gather*}
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) \tag{3.5.17}\\
H_{n}(x)=\sum_{j=0}^{n} c_{j} x^{n}, \quad c_{j+2}=\frac{2(j-n)}{(j+2)(j+1)} c_{j} \tag{3.5.18}
\end{gather*}
$$

Result 3.5.19. The eigenfunctions of the simple harmonic oscillator can be written in terms of Hermite polynomials.

$$
\begin{equation*}
\langle x \mid n\rangle=\frac{1}{\pi^{1 / 4} \sqrt{2^{n} n!}} e^{-x^{2} / 2} H_{n}(x) \tag{3.5.19}
\end{equation*}
$$

3.5.20 Time Dependent Simple Harmonic Oscillator

Result 3.5.21. The time dependent raising and lowering operators for the harmonic oscillator are

$$
\begin{gather*}
a(t)=a(0) e^{-i \omega t} \\
a^{\dagger}(t)=a^{\dagger}(0) e^{i \omega t} \tag{3.5.21}
\end{gather*}
$$

Result 3.5.22. The time dependent position and momentum operators for the harmonic oscillator are

$$
\begin{gather*}
X(t)=X(0) \cos \omega t+\frac{P(0)}{m \omega} \sin \omega t \tag{3.5.22}\\
P(0)=-m \omega X(0) \sin \omega t+P(0) \cos \omega t
\end{gather*}
$$

3.6 Finite Square Well

Definition 3.6.1. The finite square well is a quantum system for a potential well of width $2 a$ and depth V_{0} defined with the following Hamiltonian.

$$
\begin{gather*}
H=\frac{P^{2}}{2 m}+V \\
V(x)= \begin{cases}0 & x \leq-a \\
-V_{0} & -a<x<a \\
0 & a \leq x\end{cases} \tag{3.6.1}
\end{gather*}
$$

Theorem 3.6.2. For a particle with a potential $V(x)=V(-x)$, the energy eigenstates are either even $\psi(x)=\psi(-x)$ or odd $\psi(x)=-\psi(-x)$.
Result 3.6.3. The finite square well energy eigenvalues for even and odd energies must satisfy the following equations Allowed Even Energies satisfy this equation:

$$
\begin{equation*}
\sqrt{\frac{2 m E}{\hbar^{2}}} \tan \left(\frac{L}{2} \sqrt{\frac{2 m E}{\hbar^{2}}}\right)=\sqrt{\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right)} \tag{3.6.3}
\end{equation*}
$$

Allowed Odd Energies satisfy this equation:

$$
\begin{equation*}
-\sqrt{\frac{2 m E}{\hbar^{2}}} \cot \left(\frac{L}{2} \sqrt{\frac{2 m E}{\hbar^{2}}}\right)=\sqrt{\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right)} \tag{3.6.4}
\end{equation*}
$$

Result 3.6.5. The finite square well energy eigenstates must also be split up by even and odd solution. And since the number of energies varies they must also be normalized for each case.
Even Energy Eigenstates are given by

$$
\varphi_{E}(x)= \begin{cases}A e^{\sqrt{\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right)} x} & x \leq-a \tag{3.6.5}\\ B \cos \left(\sqrt{\frac{2 m E}{\hbar^{2}}} x\right) & -a<x<a \\ A e^{-\sqrt{\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right)} x} & a \leq x\end{cases}
$$

Odd Energy Eigenstates are given by

$$
\varphi_{E}(x)= \begin{cases}A e^{\sqrt{\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right)} x} & x \leq-a \tag{3.6.6}\\ C \sin \left(\sqrt{\frac{2 m E}{\hbar^{2}}} x\right) & -a<x<a \\ -A e^{-\sqrt{\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right)} x} & a \leq x\end{cases}
$$

3.7 Delta Function Potential

Definition 3.7.1. The delta function potential is a quantum system for a delta function potential well defined with the following Hamiltonian.

$$
\begin{gather*}
H=\frac{P^{2}}{2 m}+V \tag{3.7.1}\\
V(x)=\frac{-\hbar \lambda}{2 m a} \delta(x)
\end{gather*}
$$

Result 3.7.2. The Schrödinger equation for the delta function potential is

$$
\begin{gather*}
H|\psi\rangle=E|\psi\rangle \\
\left(\frac{P^{2}}{2 m}-\frac{\hbar \lambda}{2 m a} \delta(x)\right)|\psi\rangle=E|\psi\rangle \tag{3.7.2}
\end{gather*}
$$

Result 3.7.3. The solutions to the Schrödinger equation for the delta function potential are of the form

$$
\psi(x)=\left\{\begin{array}{ll}
A e^{k x} & x \leq 0 \tag{3.7.3}\\
A e^{-k x} & 0 \leq x
\end{array}, \quad k=\sqrt{\frac{2 m E}{\hbar^{2}}}\right.
$$

Result 3.7.4. By integrating a small neighborhood of zero on both sides of the Schrödinger equation for small $\varepsilon>0$ it can be shown that there is only one bound state.

$$
\begin{gather*}
\int_{-\varepsilon}^{\varepsilon}\left(\frac{P^{2}}{2 m}-\frac{\hbar \lambda}{2 m a} \delta(x)\right)|\psi\rangle d x=\int_{-\varepsilon}^{\varepsilon} E|\psi\rangle d x \tag{3.7.4}\\
\frac{\partial \psi}{\partial x}(\epsilon)-\frac{\partial \psi}{\partial x}(\epsilon)=\frac{-\lambda}{a} \psi(0) \tag{3.7.5}\\
k=\frac{\lambda}{2 a} \tag{3.7.6}\\
E=\frac{-\hbar^{2} k^{2}}{2 m}=\frac{-\hbar^{2} \lambda^{2}}{8 m a^{2}} \tag{3.7.7}
\end{gather*}
$$

Chapter 4

Flux and Continuity

4.1 Probability Density

Definition 4.1.1. The probability density denoted $\rho(\mathbf{x}, t)$ is defined by

$$
\begin{equation*}
\rho(\mathbf{x}, t)=|\langle\mathbf{x}| U(t)| \psi\rangle\left.\right|^{2} \tag{4.1.1}
\end{equation*}
$$

Definition 4.1 .2 . The probability current density or probability flux denoted \vec{J} is defined by

$$
\begin{equation*}
\mathbf{J}(\mathbf{x}, t)=\frac{\hbar}{2 m i}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) \tag{4.1.2}
\end{equation*}
$$

Theorem 4.1.3. The continuity equation states that

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{J}=0 \tag{4.1.3}
\end{equation*}
$$

Corollary 4.1.4. Gauss's law follows from the continuity equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{V} \rho(\mathbf{x}, t) \partial^{3} \mathbf{x}=-\int_{V} \nabla \cdot \mathbf{J} \partial^{3} \mathbf{x}=-\oint_{A} \mathbf{J} \cdot \partial \mathbf{A} \tag{4.1.4}
\end{equation*}
$$

4.2 Scattering of a Potential Step

Definition 4.2.1. The potential step is the quantum system of a potential step defined by the following Hamiltonian.

$$
H=\frac{P^{2}}{2 m}+V, \quad V(x)= \begin{cases}0 & x \leq 0 \tag{4.2.1}\\ V_{0} & 0 \leq x\end{cases}
$$

Result 4.2.2. The solution to scattering of a potential step is split into two regions I and $I I$.

$$
\begin{align*}
& \Psi_{I}=\underbrace{e^{i k x}}_{\begin{array}{c}
\text { Incoming } \\
\text { Wave }
\end{array}}+\underbrace{R e^{-i k x}}_{\begin{array}{c}
\text { Reflected } \\
\text { Wave }
\end{array}}, \quad k=\sqrt{\frac{2 m E}{\hbar^{2}}} \tag{4.2.2}\\
& \Psi_{I I}=\underbrace{T e^{i q x}}_{\begin{array}{c}
\text { Transmitted } \\
\text { Wave }
\end{array}}, \quad q=\sqrt{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}} \tag{4.2.2}
\end{align*}
$$

Result 4.2.3. The magnitudes of the wavefunctions of the scattering of a potential step are

$$
\begin{align*}
T & =\frac{2 k}{k+q} \tag{4.2.3}\\
R & =\frac{k-q}{k+q} \tag{4.2.4}
\end{align*}
$$

Result 4.2.5. The probability current density in regions I and $I I$ of the scattering of a potential step is

$$
\begin{gather*}
J_{I}=\frac{\hbar k}{m}\left(1-|R|^{2}\right)=J_{A}+J_{R} \tag{4.2.5}\\
J_{I I}=\frac{\hbar q}{m}|T|^{2}=J_{T} \tag{4.2.6}\\
J_{A}=\frac{\hbar k}{m} \tag{4.2.7}\\
J_{R}=-\frac{\hbar k}{m}|R|^{2}=\frac{-\hbar k}{m}\left(\frac{k-q}{k+q}\right)^{2} \tag{4.2.8}\\
J_{T}=\frac{\hbar q}{m}|T|^{2}=\frac{\hbar q}{m}\left(\frac{2 k}{k+q}\right)^{2} \tag{4.2.9}
\end{gather*}
$$

4.3 Resonance in a Finite Square Well

Result 4.3.1. The solution to scattering in a finite square well is split into regions I for $x<-a, I I$ for $-a<x<a$, and $I I I$ for $a<x$.

$$
\begin{gather*}
\Psi_{I}(x)=e^{i k x}+R e^{i k x}, \quad k=\sqrt{\frac{2 m E}{\hbar^{2}}} \tag{4.3.1}\\
\Psi_{I I}(x)=A e^{i q x}+B e^{-i q x}, \quad q=\sqrt{\frac{2 m\left(E+V_{0}\right)}{\hbar^{2}}} \tag{4.3.2}\\
\Psi_{I I I}(x)=T e^{i k x}, \quad k=\sqrt{\frac{2 m E}{\hbar^{2}}} \tag{4.3.3}
\end{gather*}
$$

Result 4.3.4. The magnitudes of the wavefunctions of the scattering of a potential step are

$$
\begin{align*}
R & =\frac{e^{-2 i k a}\left(q^{2}-k^{2}\right) \sin (2 q a)}{2 k q \cos (2 q a)-i\left(q^{2}+k^{2}\right) \sin (2 q a)} \tag{4.3.4}\\
T & =\frac{e^{-2 i k a}\left(q^{2}-k^{2}\right) \sin (2 q a)}{2 k q \cos (2 q a)-i\left(q^{2}+k^{2}\right) \sin (2 q a)} \tag{4.3.5}
\end{align*}
$$

Result 4.3.6. The probability current density in regions I and $I I$ of the scattering of a potential step is

$$
\begin{gather*}
J_{I}=\frac{\hbar k}{m}\left(1-|R|^{2}\right)=J_{A}+J_{R} \tag{4.3.6}\\
J_{I I}=\frac{\hbar k}{m}|T|^{2}=J_{T} \tag{4.3.7}\\
J_{A}=\frac{\hbar k}{m} \tag{4.3.8}\\
J_{R}=-\frac{\hbar k}{m}|R|^{2}=\frac{-\hbar k}{m}\left|\frac{e^{-2 i k a}\left(q^{2}-k^{2}\right) \sin (2 q a)}{2 k q \cos (2 q a)-i\left(q^{2}+k^{2}\right) \sin (2 q a)}\right|^{2} \tag{4.3.9}\\
J_{T}=\frac{\hbar k}{m}|T|^{2}=\frac{\hbar k}{m}\left|\frac{e^{-2 i k a}\left(q^{2}-k^{2}\right) \sin (2 q a)}{2 k q \cos (2 q a)-i\left(q^{2}+k^{2}\right) \sin (2 q a)}\right|^{2} \tag{4.3.10}
\end{gather*}
$$

Theorem 4.3.11. The Ramsaur-Townzend effect states for the finite square well that at the resonance condition $\sin (2 q a)=0$, the entire incoming wave will be transmitted and there will be no reflection $T=1, R=0$.

Chapter 5

Quantum Electrodynamics

5.1 Classical Electrodynamics

Definition 5.1.1. The electromagnetic scalar potential $\Phi(\mathbf{x}, t)$ and vector potential $\mathbf{A}(\mathbf{x}, t)$ are defined in terms of the electric field \mathbf{E} and magnetic field \mathbf{B} by

$$
\begin{gather*}
\mathbf{E}=-\nabla \Phi-\frac{1}{c} \frac{\partial}{\partial t} \mathbf{A} \tag{5.1.1}\\
\mathbf{B}=\nabla \times \mathbf{A} \tag{5.1.2}
\end{gather*}
$$

Definition 5.1.3. The classical Lagrangian $L(\mathbf{x}, \mathbf{v})$ describes the potential energy of a particle with position \mathbf{x}, velocity \mathbf{v}, charge e and mass m.

$$
\begin{equation*}
L(\mathbf{x}, \mathbf{v})=\frac{m \mathbf{v}^{2}}{2}-e \Phi+\frac{e}{c} \mathbf{A} \cdot \mathbf{v} \tag{5.1.3}
\end{equation*}
$$

Theorem 5.1.4. The gauge invariance state that Φ and \mathbf{A} are not uniquely determined by \mathbf{E} and \mathbf{B}. For any function $f(\mathbf{x}, t)$
Definition 5.1.5. The canonical momentum is momentum that takes the electromagnetic vector potential \mathbf{A} in account.

$$
\begin{equation*}
\mathbf{p}=m \mathbf{v}+\frac{e}{c} \mathbf{A} \tag{5.1.5}
\end{equation*}
$$

Definition 5.1.6. The Euler-Lagrange Equation describes how the classical fields change with time.

$$
\begin{equation*}
m \frac{d \mathbf{v}}{d t}=e \mathbf{E}+\frac{e}{c} \mathbf{v} \times \mathbf{B} \tag{5.1.6}
\end{equation*}
$$

Definition 5.1.7. The classical electrodynamics Hamiltonian is defined as

$$
\begin{equation*}
H(\mathbf{p}, \mathbf{x})=\frac{1}{2 m}\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right)^{2}+e \Phi \tag{5.1.7}
\end{equation*}
$$

Theorem 5.1.8. The Gauge Invariance Theorem states that the electromagnetic scalar and vector potentials are not unique. For an arbitrary function $f(\mathbf{x}, \mathbf{t})$, the scalar Φ^{\prime} and vector \mathbf{A}^{\prime} potentials have the same E and B fields.

$$
\begin{align*}
\mathbf{A} \rightarrow \mathbf{A}^{\prime} & =\mathbf{A}+\nabla f \tag{5.1.8}\\
\Phi \rightarrow \Phi^{\prime} & =\Phi-\frac{1}{c} \frac{\partial}{\partial t} f \tag{5.1.9}
\end{align*}
$$

Corollary 5.1.10. The canonical momentum is Gauge dependent.

5.2 Quantum Electrodynamics

Definition 5.2.1. The quantum electrodynamics Hamiltonian is defined as

$$
\begin{equation*}
H(\mathbf{P}, \mathbf{X})=\frac{1}{2 m}\left(\mathbf{P}-\frac{e}{c} \mathbf{A}(\mathbf{X})\right)^{2}+e \Phi(\mathbf{X}) \tag{5.2.1}
\end{equation*}
$$

s
Result 5.2.2. From the quantum electrodynamics Hamiltonian we can derive the following equations of motion

$$
\begin{gather*}
\frac{d \mathbf{x}}{d t}=\frac{1}{m}\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right) \tag{5.2.2}\\
\frac{d^{2} \mathbf{x}}{d t^{2}}=e \mathbf{E}+\frac{e}{2 c}\left(\frac{d \mathbf{x}}{d t} \times \mathbf{B}-\mathbf{B} \times \frac{d \mathbf{x}}{d t}\right) \tag{5.2.3}
\end{gather*}
$$

Theorem 5.2.4. The continuity equation for quantum electrodynamics states that

$$
\begin{equation*}
\mathbf{J}(\mathbf{x}, t)=\frac{\hbar}{2 m i}\left(\Psi^{*} \nabla \Psi-\Psi \nabla \Psi^{*}\right)-\frac{e}{m c} \mathbf{A} p(\mathbf{x}, t) \tag{5.2.4}
\end{equation*}
$$

5.3 Aharanov-Bohn Effect

Definition 5.3.1. The double slit Aharanov-Bohn experiment is a simple example of the Aharanov-Bohn effect for a double slit experiment with a solenoid.

$$
\begin{gather*}
\Psi(\mathbf{X}, t)=\Psi_{1}(\mathbf{X}, t)+\Psi_{2}(\mathbf{X}, t) \tag{5.3.1}\\
i \hbar \frac{\partial \Psi}{\partial t}=\frac{-\hbar^{2}}{2 m}\left(\nabla-\frac{i e}{\hbar c} \mathbf{A}\right) \Psi+V \Psi \tag{5.3.2}
\end{gather*}
$$

Result 5.3.3. Each of the two paths sees a phase shift as a result of the electromagnetic vector potential along the path

$$
\begin{gather*}
\Psi_{i}^{\prime}(\mathbf{X}, t)=e^{i g(\mathbf{X})} \Psi_{i}(\mathbf{X}, t), \quad g(\mathbf{X})=\int_{\mathbf{x}_{0}}^{\mathbf{X}} \mathbf{A}(\mathbf{X}) \cdot d \mathbf{x}^{\prime} \tag{5.3.3}\\
\left|\Psi^{\prime}(x)\right|^{2}=\left|\Psi_{1}\right|^{2}+\left|\Psi_{2}\right|^{2}+2 \operatorname{Re}\left(\Psi_{1} \Psi_{2}^{*} e^{i \delta}\right) \tag{5.3.4}\\
\delta=\frac{e}{\hbar c}\left[\int_{\mathbf{x}_{\mathbf{0}}}^{\mathbf{x}_{\mathbf{f}}} \mathbf{A} \cdot d \mathbf{x}^{\prime}-\int_{\mathbf{x}_{\mathbf{0}}}^{\mathbf{x}_{\mathbf{f}}} \mathbf{A} \cdot d \mathbf{x}^{\prime}\right]=\frac{e \Phi_{B}}{\hbar c}, \quad \Phi_{B}=\text { the total flux } \tag{5.3.5}
\end{gather*}
$$

Chapter 6

Angular Momentum

6.1 Rotations and Angular Momentum

Definition 6.1.1. A rotation $R(\mathbf{n}, \varphi)$ is a transformation of coordinates in a space that rotates coordinates about an axis \mathbf{n} by angle φ.

Corollary 6.1.2. A rotation is unitary and has a determinant of 1 .

$$
\begin{equation*}
R^{\dagger} R=I, \quad \operatorname{det} R=1 \tag{6.1.2}
\end{equation*}
$$

Definition 6.1.3. The 3D rotation matrices are

$$
R(\mathbf{x}, \varphi)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{6.1.3}\\
0 & \cos \varphi & -\sin \varphi \\
0 & \sin \varphi & \cos \varphi
\end{array}\right), \quad R(\mathbf{y}, \varphi)=\left(\begin{array}{ccc}
\cos \varphi & 0 & \sin \varphi \\
0 & 1 & 0 \\
-\sin \varphi & 0 & \cos \varphi
\end{array}\right), \quad R(\mathbf{z}, \varphi)=\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Definition 6.1.4. The rotation operator $D(\mathbf{n}, \varphi)$ is a unitary operator that rotates the eigenvalues $|\mathbf{x}\rangle$ of \mathbf{X} to the eigenvalue rotated by $R(\mathbf{n}, \varphi)$.

$$
\begin{equation*}
D(\mathbf{n}, \varphi)|\mathbf{x}\rangle=|R(\mathbf{n}, \varphi) \mathbf{x}\rangle \tag{6.1.4}
\end{equation*}
$$

Definition 6.1.5. The angular momentum operators J_{x}, J_{y}, J_{z}, and \mathbf{J} are defined in terms of the generator of rotation.

$$
\begin{align*}
D(\mathbf{x}, d \varphi)=I-\frac{i}{\hbar} d \varphi J_{x}, \quad D(R(\mathbf{y}, d \varphi)) & =I-\frac{i}{\hbar} d \varphi J_{y}, \quad D(R(\mathbf{z}, d \varphi))=I-\frac{i}{\hbar} d \varphi J_{z} \tag{6.1.5}\\
D(\mathbf{n}, d \varphi) & =I-\frac{i}{\hbar} d \varphi \mathbf{n} \cdot \mathbf{J} \tag{6.1.6}
\end{align*}
$$

Result 6.1.7. For finite rotations the rotation operator can be written as an exponential of angular momentum.

$$
\begin{equation*}
D(\mathbf{n}, \varphi)=\lim _{N \rightarrow \infty}\left(I-\frac{i \varphi}{\hbar N} \mathbf{n} \cdot \mathbf{J}\right)^{N}=e^{-i \varphi \mathbf{n} \cdot \mathbf{J} / \hbar} \tag{6.1.7}
\end{equation*}
$$

Proposition 6.1.8. The rotation operator preserves the properties of the rotation group.

$$
\begin{equation*}
[R(\mathbf{x}, \alpha), R(\mathbf{y}, \beta)]=R(\mathbf{z}, \alpha \beta)-I, \quad[D(\mathbf{x}, \alpha), D(\mathbf{y}, \beta)]=D(\mathbf{z}, \alpha \beta)-I \tag{6.1.8}
\end{equation*}
$$

Theorem 6.1.9. The fundamental angular momentum commutation relation states that

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \hbar \varepsilon_{i, j, k} J_{k} \tag{6.1.9}
\end{equation*}
$$

Proposition 6.1.10. If $D^{\dagger}(R) J_{i} D(R)=R_{i, j} J_{j}$, then the expectation value of angular momentum rotates as a 3D vector $\langle D(R) \mathbf{J}\rangle=R\langle\mathbf{J}\rangle$.

6.2 General Angular Momentum

Definition 6.2.1. General Angular Momentum is an operator denoted $\hat{\mathbf{J}}$ with eigenvalues $\left|j, m_{j}\right\rangle$ for $j=0,1,2, \ldots$ and $m_{j}=-j,-j+1, \ldots, 0, \ldots, j-1, j$ that is used to generalize the properties of angular momentum.
Proposition 6.2.2. $\left|j, m_{j}\right\rangle$ are simultaneous eigenstates of \hat{J}^{2} and \hat{J}_{z}.

$$
\begin{equation*}
\left[\hat{J}^{2}, \hat{J}_{z}\right]=0, \quad\left[\hat{J}^{2}, \hat{J}_{x}\right]=0, \quad\left[\hat{J}^{2}, \hat{J}_{y}\right]=0 \tag{6.2.2}
\end{equation*}
$$

Proposition 6.2.3. The operators \hat{J}^{2} and \hat{J}_{z} have the following eigenvalues

$$
\begin{gather*}
\hat{J}^{2}\left|j, m_{j}\right\rangle=\hbar^{2} j(j+1)\left|j, m_{j}\right\rangle \tag{6.2.3}\\
\hat{J}_{z}\left|j, m_{j}\right\rangle=\hbar m_{j}\left|j, m_{j}\right\rangle \tag{6.2.4}
\end{gather*}
$$

Proposition 6.2.5. The angular momentum components do not commute.

$$
\begin{equation*}
\left[\hat{J}_{x}, \hat{J}_{y}\right]=i \hbar \hat{J}_{z}, \quad\left[\hat{J}_{y}, \hat{J}_{z}\right]=i \hbar \hat{J}_{x}, \quad\left[\hat{J}_{z}, \hat{J}_{x}\right]=i \hbar \hat{J}_{y} \tag{6.2.5}
\end{equation*}
$$

Definition 6.2.6. The angular momentum latter operators are the operators \hat{J}_{+}and \hat{J}_{-}defined

$$
\begin{align*}
& \hat{J}_{+}=\hat{J}_{x}+i \hat{J}_{y} \tag{6.2.6}\\
& \hat{J}_{-}=\hat{J}_{x}-i \hat{J}_{y} \tag{6.2.7}
\end{align*}
$$

Proposition 6.2.8. The latter operators are Hermitian conjugates.

$$
\begin{equation*}
\hat{J}_{+}^{\dagger}=\hat{J}_{-} \tag{6.2.8}
\end{equation*}
$$

Proposition 6.2.9. The latter operators commute with \hat{J}^{2}

$$
\begin{equation*}
\left[\hat{J}^{2}, \hat{J}_{ \pm}\right]=0 \tag{6.2.9}
\end{equation*}
$$

Proposition 6.2.10. The latter operators do not commute with each other

$$
\begin{equation*}
\left[\hat{J}_{+}, \hat{J}_{-}\right]=2 \hbar \hat{J}_{z} \tag{6.2.10}
\end{equation*}
$$

Proposition 6.2.11. The latter operators do not commute with \hat{J}_{z}

$$
\begin{align*}
& {\left[\hat{J}_{z}, \hat{J}_{+}\right]=\hbar \hat{J}_{+}} \tag{6.2.11}\\
& {\left[\hat{J}_{z}, \hat{J}_{-}\right]=\hbar \hat{J}_{-}} \tag{6.2.12}
\end{align*}
$$

Proposition 6.2.13. The angular momentum latter operators can be used to raise and lower eigenstates.

$$
\begin{gather*}
\hat{J}_{+}\left|j, m_{j}\right\rangle=\hbar \sqrt{j(j+1)-m_{j}\left(m_{j}+1\right)}\left|j, m_{j}+1\right\rangle \tag{6.2.13}\\
\hat{J}_{-}\left|j, m_{j}\right\rangle=\hbar \sqrt{j(j+1)-m_{j}\left(m_{j}-1\right)}\left|j, m_{j}-1\right\rangle \tag{6.2.14}\\
\hat{J}_{+}|j, j\rangle=0 \tag{6.2.15}\\
\hat{J}_{-}|j,-j\rangle=0 \tag{6.2.16}
\end{gather*}
$$

6.3 Coupling of Angular Momentum

For a system consisting of two angular momentum operators we can find a basis consisting of eigenstates of the combined angular momentum.

Definition 6.3.1. The total angular momentum for two angular momentum operators \mathbf{J}_{1} and \mathbf{J}_{2} is the operator

$$
\begin{equation*}
\mathbf{J}=\mathbf{J}_{1}+\mathbf{J}_{2} \tag{6.3.1}
\end{equation*}
$$

Definition 6.3.2. An uncoupled basis is a basis of a system of angular momentum that consists of eigenstates of the original separate momentum operators. For two angular momentum operators \mathbf{J}_{1} and \mathbf{J}_{2} the uncoupled basis is written $\left|j_{1}, j_{2}, m_{1}, m_{2}\right\rangle$ in terms of the quantum numbers j_{1}, m_{1}, j_{2}, and m_{2}.
Definition 6.3.3. An coupled basis is a basis of a system of angular momentum that consists of eigenstates of the total angular momentum written $|J, M\rangle$ in terms of to total quantum numbers J and M.

Proposition 6.3.4. The min and max value of J are determined by the values of j_{1} and j_{2}

$$
\begin{gather*}
J^{\max }=j_{1}+j_{2} \tag{6.3.4}\\
J^{\min }=\left|j_{1}-j_{2}\right| \tag{6.3.4}\\
M=m_{1}+m_{2} \tag{6.3.4}
\end{gather*}
$$

Definition 6.3.5. The Clebsch-Gordan Coefficients are the terms $C_{m_{1}, m_{2}, M}^{j_{1}, j_{2}, J}$ that can be used to write the coupled basis in terms of the uncoupled basis.

$$
\begin{align*}
& C_{m_{1}, m_{2}, M}^{j_{1}, j_{2}, J}=\left\langle j_{1}, j_{2}, m_{1}, m_{2} \mid J, M\right\rangle \tag{6.3.5}\\
& |J, M\rangle=\sum_{m_{1}=-j_{1}}^{j_{1}} \sum_{m_{2}=-j_{2}}^{j_{2}} C_{m_{1}, m_{2}, M}^{j_{1}, j_{2}, J}\left|j_{1}, j_{1}, m_{1}, m_{2}\right\rangle \tag{6.3.6}\\
& \left|j_{1}, j_{2}, m_{1}, m_{2}\right\rangle=\sum_{J=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} C_{m_{1}, m_{2}, M}^{j_{1}, j_{2}, J}|J, M\rangle \tag{6.3.7}
\end{align*}
$$

Proposition 6.3.8. The Clebsch-Gordan Coefficients are always real and $C_{m_{1}, m_{2}, M}^{j_{1}, j_{2}, J}=0$ for all $m_{1}+m_{2} \neq M$.

Theorem 6.3.9. Procedure for Finding an Uncoupled Basis

1. The highest element on the ladder is $\left|J^{\max }, J^{\max }\right\rangle=\left|j_{1}, j_{2}, j_{1}, j_{2}\right\rangle$
2. Apply $\hat{J}_{-}=\hat{J}_{1-}+\hat{J}_{2-}$ to find $\left|J^{\max }, \hat{J}^{\max }-1\right\rangle$.
3. Use orthogonality to find $\left|\hat{J}^{\max }-1, \hat{J}^{\max }-1\right\rangle$.

Chapter 7

Hydrogen-Like Systems

7.1 Radial Solution

7.2 Angular Solution

Definition 7.2.1. The angular momentum operator \mathbf{L} is for the hydrogen atom is defined in terms of position and momentum

$$
\begin{equation*}
\mathbf{L}=\mathbf{x} \times \mathbf{p} \tag{7.2.1}
\end{equation*}
$$

7.2.2 Runge-Lenz Vector

Definition 7.2.3. The Lenz vector operator \mathbf{M} is defined as

$$
\begin{equation*}
\mathbf{M}=\frac{1}{2 m}(\mathbf{p} \times \mathbf{L}-\mathbf{L} \times \mathbf{p})-\frac{Z e^{2}}{r} \mathbf{x} \tag{7.2.3}
\end{equation*}
$$

Proposition 7.2.4. The eigenvalues of \mathbf{M}^{2} correspond with the quantum numbers m found in the angular solution.

7.3 3D Harmonic Oscillator

Chapter 8

Symmetry

8.1 Symmetry Operators

Definition 8.1.1. An infinitesimally generated operator is a symmetry operator that differs infinitesimally from the identity operator. For some Hermitian operator G, a symmetry operator O can be written as

$$
\begin{equation*}
O=I-\frac{1 \varepsilon}{\hbar} G \tag{8.1.1}
\end{equation*}
$$

Proposition 8.1.2. If the Hamiltonian H is invariant under an infinitesimally generated operator O, that is $O^{\dagger} H O=H$, then the generating Hermitian operator G commutes with H, that is $[G, H]=0$ and $\frac{\partial G}{\partial t}=0$.

Proposition 8.1.3. If G is the generating Hermitian operator of an infinitesimally generated operator O that invariant acts on H, then if $|g\rangle$ is an eigenstate of $G, U(t)|g\rangle$ is also an

8.2 Parity

Definition 8.2.1. The parity operator is a Hermitian symmetry operator denoted Π defined by

$$
\begin{equation*}
\Pi^{\dagger} \mathbf{X} \Pi=-\mathbf{X}, \quad \Pi|\mathbf{x}\rangle=|-\mathbf{x}\rangle, \quad \Pi|\mathbf{p}\rangle=|-\mathbf{p}\rangle \tag{8.2.1}
\end{equation*}
$$

Definition 8.2.2. A polar vector is a vector operator \mathbf{V} that is inverted under parity $\Pi^{\dagger} \mathbf{V} \Pi=-\mathbf{V}$.
Definition 8.2.3. A pseudo vector is a vector operator \mathbf{V} that is invarient under parity $\Pi^{\dagger} \mathbf{V} \Pi=\mathbf{V}$.
Definition 8.2.4. A polar scalar is a scalar operator S that is invarient under parity $\Pi^{\dagger} S \Pi=S$.
Definition 8.2.5. A pseudo scalar is a scalar operator S that is inverted under parity $\Pi^{\dagger} S \Pi=-S$.
Result 8.2.6. Angular momentum and general angular momentum are pseudo vectors.

$$
\begin{equation*}
\Pi^{\dagger} \mathbf{L} \Pi=\mathbf{L}, \quad \Pi^{\dagger} \mathbf{J} \Pi=\mathbf{J} \tag{8.2.6}
\end{equation*}
$$

Proposition 8.2.7. The parity operator acts on wave functions by inverting the input eigenket.

$$
\begin{equation*}
\Pi \Psi(\mathbf{x})=\langle\mathbf{x}| \Pi|\Psi\rangle=\langle\mathbf{x}| \Pi^{\dagger}|\Psi\rangle=\langle-\mathbf{x} \mid \Psi\rangle=\Psi(-\mathbf{x}) \tag{8.2.7}
\end{equation*}
$$

Definition 8.2.8. A wave function $\Psi(\mathbf{x})$ has even parity iff $\Psi(-\mathbf{x})=\Psi(\mathbf{x})$.
Definition 8.2.9. A wave function $\Psi(\mathbf{x})$ has odd parity iff $\Psi(-\mathbf{x})=-\Psi(\mathbf{x})$.
Theorem 8.2.10. A spherical harmonic Y_{ℓ}^{m} has even parity iff ℓ is even and odd parity iff ℓ is odd.
Theorem 8.2.11. If $[H, \Pi]=0$, then non-degenerate energy eigenstates $\left|\Psi_{n}\right\rangle$ are also eigenstates of Π.
Theorem 8.2.12. Let $|\alpha\rangle$ and $|\beta\rangle$ be parity eigenstates with corresponding eigenvalues $\varepsilon_{\alpha}= \pm 1$ and $\varepsilon_{\beta}= \pm 1$. For an operator Ω such that $\Pi^{\dagger} \Omega \Pi=\varepsilon_{\Omega} \Omega$ for $\varepsilon_{\Omega}= \pm 1$,

$$
\begin{equation*}
\langle\alpha| \Omega|\beta\rangle=0 \quad \text { if } \varepsilon_{\alpha} \varepsilon_{\Omega} \varepsilon_{\beta} \neq 1 \tag{8.2.12}
\end{equation*}
$$

8.3 Time Reversal

Definition 8.3.1. The conjugation operator K defined in terms of a basis $\left\{\left|\phi_{n}\right\rangle\right\}$ is a non-linear operator that acts on a ket by taking to complex conjugate of the coefficients of the representation of the ket in term of the basis $\left\{\left|\phi_{n}\right\rangle\right\}$. That is for any ket $|\psi\rangle=\psi_{1}\left|\phi_{1}\right\rangle+\cdots+\psi_{n}\left|\phi_{n}\right\rangle$,

$$
\begin{equation*}
K|\psi\rangle=\psi_{1}^{*}\left|\phi_{1}\right\rangle+\cdots+\psi_{n}^{*}\left|\phi_{n}\right\rangle \tag{8.3.1}
\end{equation*}
$$

Definition 8.3.2. An anti-unitary operator is a non-linear operator that can be written as a product of a unitary operator U and the conjugation operator K.

Definition 8.3.3. The time reversal operator Θ is defined by an anti-unitary operator such that

$$
\begin{gather*}
e^{-i H t / \hbar} \Theta=\Theta e^{i H t / \hbar} \tag{8.3.3}\\
\Theta^{-1}(-i H) \Theta=i H \tag{8.3.4}
\end{gather*}
$$

Theorem 8.3.5. Wigner's Theorem states that for any operator that maintains the normalization of kets is either unitary or anti-unitary.

Proposition 8.3.6. For an anti-unitary operator O, and any two kets $|\alpha\rangle,|\beta\rangle$,

$$
\begin{gather*}
\langle\alpha| O^{-1} O|\beta\rangle=\langle\alpha \mid \beta\rangle^{*}=\langle\beta \mid \alpha\rangle \tag{8.3.6}\\
O\left(c_{1}|\alpha\rangle+c_{2}|\beta\rangle\right)=c_{1}^{*} O|\alpha\rangle+c_{2}^{*}|\beta\rangle \tag{8.3.7}
\end{gather*}
$$

Theorem 8.3.8. If a H is invariant under time-reversal symmetry then,

$$
\begin{equation*}
\Theta^{-1}(-i H) \Theta=i H, \quad[H, \Theta]=0 \tag{8.3.8}
\end{equation*}
$$

Definition 8.3.9. An operator under time reversal is defined as

$$
\begin{equation*}
\langle\beta| A|\alpha\rangle=\langle\alpha| \Theta^{-1} \Theta A^{\dagger} \Theta^{-1} \Theta|\beta\rangle \tag{8.3.9}
\end{equation*}
$$

Definition 8.3.10. An operator A is even under time reversal iff $\Theta A \Theta^{-1}=A$.
Definition 8.3.11. An operator A is odd under time reversal iff $\Theta A \Theta^{-1}=-A$.
Result 8.3.12. For the time reversal operator Θ, eigenstates $|\mathbf{x}\rangle,|\mathbf{p}\rangle$ of the position operator \mathbf{X} and of the momentum operator \mathbf{P}, \mathbf{J} is the generalized angular momentum operator.

$$
\begin{gather*}
\Theta \mathbf{X} \Theta^{-1}=\mathbf{X}, \quad \Theta \mathbf{P} \Theta^{-1}=-\mathbf{P}, \quad \Theta \mathbf{J} \Theta^{-1}=-\mathbf{J} \tag{8.3.12}\\
\Theta|\mathbf{x}\rangle=e^{i \delta}|\mathbf{x}\rangle, \quad \text { for some } \delta \in \mathbb{R} \tag{8.3.13}\\
\Theta \psi(\mathbf{x}, t)=\Theta^{*}(\mathbf{x},-t) \tag{8.3.14}\\
\Theta Y_{\ell}^{m}(\theta, \phi)=\Theta^{*}(\mathbf{x},-t)=(-1)^{m} Y_{\ell}^{m}(\theta, \phi) \tag{8.3.15}
\end{gather*}
$$

Result 8.3.16. The electric dipole momentum violates time reversal symmetry.

Chapter 9

Time-Independent Approximation Methods

Definition 9.0.1. A Hamiltonian is exactly solved if an exact representation of the energy eigenvalues and energy eigenvectors can be found.
Definition 9.0.2. A perturbation is a system consisting of a small change from a exactly solved system $\hat{H}_{0} . \hat{H}^{\prime}$ is the small change that is applied. The solution of a perturbation is found with an infinite series.

$$
\begin{gather*}
\hat{H}=\hat{H}_{0}+\hat{H}^{\prime} \tag{9.0.2}\\
E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)}+E_{n}^{(3)}+\ldots \tag{9.0.3}\\
|n\rangle=\left|n^{(0)}\right\rangle+\left|n^{(1)}\right\rangle+\left|n^{(2)}\right\rangle+\left|n^{(3)}\right\rangle+\ldots \tag{9.0.4}
\end{gather*}
$$

9.1 Non-degenerate Time-Independent Perturbation Theory

Result 9.1.1. First Order Perturbation Eigenvalues - The first order correction for the levels of a perturbation are given by

$$
\begin{equation*}
E_{n}^{(1)}=\left\langle n^{(0)}\right| \hat{H}^{\prime}\left|n^{(0)}\right\rangle \tag{9.1.1}
\end{equation*}
$$

Result 9.1.2. First Order Perturbation Eigenstates - The first order correction for the eigenstates of a perturbation is given by

$$
\begin{equation*}
\left|n^{(1)}\right\rangle=\sum_{m \neq n} \frac{\left\langle m^{(0)}\right| \hat{H}^{\prime}\left|n^{(0)}\right\rangle}{E_{n}^{(0)}-E_{m}^{(0)}}\left|m^{(0)}\right\rangle \tag{9.1.2}
\end{equation*}
$$

Result 9.1.3. Second Order Perturbation Eigenvalues - The second order correction for the eigenstates of a perturbation is given by

$$
\begin{equation*}
E_{n}^{(2)}=\sum_{m \neq n} \frac{\left.\left|\left\langle m^{(0)}\right| \hat{H}^{\prime}\right| n^{(0)}\right\rangle\left.\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}} \tag{9.1.3}
\end{equation*}
$$

Result 9.1.4. Second Order Perturbation Eigenstates - The second order correction for the eigenstates of a perturbation is given by

$$
\begin{gather*}
\left|n^{(2)}\right\rangle=\sum_{m \neq n} \sum_{k \neq n} \frac{\left\langle m^{(0)}\right| \hat{H}^{\prime}\left|k^{(0)}\right\rangle\left\langle k^{(0)}\right| \hat{H}^{\prime}\left|n^{(0)}\right\rangle}{\left(E_{n}^{(0)}-E_{m}^{(0)}\right)\left(E_{n}^{(0)}-E_{k}^{(0)}\right)}\left|m^{(0)}\right\rangle \tag{9.1.4}\\
-\sum_{m \neq n} \frac{\left\langle m^{(0)}\right| \hat{H}^{\prime}\left|n^{(0)}\right\rangle\left\langle n^{(0)}\right| \hat{H}^{\prime}\left|n^{(0)}\right\rangle}{\left(E_{n}^{(0)}-E_{m}^{(0)}\right)^{2}}\left|m^{(0)}\right\rangle-\frac{1}{2} \sum_{m \neq n} \frac{\left.\left|\left\langle m^{(0)}\right| \hat{H}^{\prime}\right| n^{(0)}\right\rangle\left.\right|^{2}}{\left(E_{n}^{(0)}-E_{m}^{(0)}\right)^{2}}\left|n^{(0)}\right\rangle \tag{9.1.4}
\end{gather*}
$$

Proposition 9.1.5. The first order correction to the energy eigenvalue of the ground state always exact or an overestimate.
Proposition 9.1.6. The second order correction to the energy eigenvalue of the ground state is always negative.

9.2 Degenerate Time-Independent Perturbation theory

Perturbation theory does not work for degenerate energies. To resolve this issue we will find a new energy eigenbasis of \hat{H}_{0} such that

$$
\begin{equation*}
\left\langle m^{(0)} \hat{H}^{\prime} \mid n^{(0)}\right\rangle \mid=0 \tag{9.2.0}
\end{equation*}
$$

For any two degenerate states m and n. The perturbation Hamiltonian \hat{H}^{\prime} may split the degeneracy. However, since \hat{H}^{\prime} is not generally diagonalizable we will consider \hat{H}^{\prime} in the subspace of each degenerate energy.

Definition 9.2.1. A conservation law is an operator \hat{A} such that $\left[\hat{H}_{0}, \hat{A}\right]=\left[\hat{H}^{\prime}, \hat{A}\right]=0$.
Theorem 9.2.2. Degenerate Perturbation Subspace Theorem - If a conservation law exists then perturbation theory can be used by finding an energy eigenbasis of \hat{H}_{0} such that $\left\langle m^{(0)} \hat{H}^{\prime} \mid n^{(0)}\right\rangle \mid=0$ for any two degenerate states m and n. To find such an eigenbasis, apply the following for each degeneracy:

1. Consider the subspace of degenerate eigenstates $|n\rangle$.
2. Find the matrix of \hat{H}^{\prime} in in this subspace.
3. Diagonalize the matrix to find a new basis $\left|n^{\prime}\right\rangle$.
4. The new basis elements are simultaneous eigenstates of \hat{H}^{\prime} and \hat{H}_{0}.
5. Repeat this process for each degeneracy.

9.3 The Stark Effect

Definition 9.3.1. The Stark effect is a perturbation of the hydrogen atom by a constant electric field defined

$$
\begin{equation*}
H^{\prime}=-e E Z \tag{9.3.1}
\end{equation*}
$$

Result 9.3.2. Applying non-degenerate perturbation theory to the ground state results in the following first non-zero stark effect shift.

$$
\begin{equation*}
E_{100}^{(2)}=e^{2} E^{2} \sum_{n=2}^{\infty} \frac{|\langle n 10| Z| 100\rangle\left.\right|^{2}}{E_{1}-E_{n}} \tag{9.3.2}
\end{equation*}
$$

Result 9.3.3. The stark effect induces an electric dipole moment d_{z} in the ground state of the hydrogen atom

$$
\begin{equation*}
d_{z}=-\frac{2}{E^{2}} E_{100}^{(2)}, \quad d_{z}<\frac{16 a_{0}^{3}}{3} \tag{9.3.3}
\end{equation*}
$$

9.4 The Zeeman Effect

Definition 9.4.1. The Zeeman effect is a perturbation of the hydrogen atom by a constant magnetic field defined

$$
\begin{equation*}
H^{\prime}=\frac{-e B}{2 m c}\left(L_{z}+2 S_{z}\right) \tag{9.4.1}
\end{equation*}
$$

Definition 9.4.2. The Bohr magneton is the magnetic moment of an electron defined

$$
\begin{equation*}
\mu_{B}=\frac{e \hbar}{2 m_{e}} \tag{9.4.2}
\end{equation*}
$$

9.4.3 Week Field Limit

Definition 9.4.4. The week field limit Zeeman effect is the approximation that assumes the magnetic field is much weaker than contribution from spin orbit coupling that is $\Delta E_{z} \ll \Delta E_{L S}$.

Result 9.4.5. The first order Zeeman effect correction for the weak field limit where $j=\ell \pm 1 / 2$ is

$$
\begin{equation*}
E_{B(n \ell j m)}^{(1)}=\mu_{B} B m\left(1+\frac{\langle n \ell j m| S_{z}|n \ell j m\rangle}{m \hbar}\right)=\mu_{B} B m\left(1 \pm \frac{1}{2 \ell+1}\right) \tag{9.4.5}
\end{equation*}
$$

9.4.6 Strong Field Limit

Definition 9.4.7. The strong field limit Zeeman effect is the approximation that assumes the magnetic field is much stronger than contribution from spin orbit coupling that is $\Delta E_{z} \gg \Delta E_{L S}$.

Result 9.4.8. The first order Zeeman effect correction for the strong field limit where is

$$
\begin{equation*}
E_{B\left(n \ell m_{\ell} m_{S}\right)}^{(1)}=\mu_{B} B\left(m_{\ell}+2 m_{S}\right) \tag{9.4.8}
\end{equation*}
$$

9.5 Fine Structure

Definition 9.5.1. The fine structure is a perturbation of the hydrogen atom by relativistic corrections defined

$$
\begin{equation*}
H_{K}^{\prime}=-\frac{1}{8} \frac{P^{4}}{m^{3} c^{2}} \tag{9.5.1}
\end{equation*}
$$

Result 9.5.2. Angular momentum commutes with the fine structure correction.

$$
\begin{equation*}
\left[L^{2}, H_{K}^{\prime}\right]=0 \tag{9.5.2}
\end{equation*}
$$

Result 9.5.3. The first order fine structure correction is

$$
\begin{equation*}
E_{K}^{(1)}=E_{n}^{(0)} \alpha^{2}\left[-\frac{3}{4 n^{2}}+\frac{1}{n(\ell+1 / 2)}\right] \tag{9.5.3}
\end{equation*}
$$

9.6 Spin Orbit Coupling

Definition 9.6.1. the spin orbit coupling is a perturbation of the hydrogen atom that approximates the effects of the interaction between the spin of the electron and the angular momentum of orbitals defined

$$
\begin{equation*}
H_{L S}^{\prime}=\frac{1}{2 m^{2} c^{2}} \frac{1}{r} \frac{\partial V}{\partial r}=\frac{1}{2 m^{2} c^{2}} \frac{e^{2}}{4^{3}} \tag{9.6.1}
\end{equation*}
$$

Result 9.6.2. The first order spin orbit coupling correction is

$$
E_{L S}^{(1)}=-E_{n}^{(0)} \alpha^{2}\left(\frac{-1}{2 n(\ell+1 / 2)}\right)\left[\begin{array}{c}
\frac{1}{\ell+1} \tag{9.6.2}\\
\frac{-1}{\ell}
\end{array}\right]
$$

Result 9.6.3. The fine structure and spin orbit coupling correction for $\ell \neq 0$ and $j=\ell \pm \frac{1}{2}$ is

$$
\begin{equation*}
E_{n \ell j}^{(1)}=E_{n}^{(0)} \alpha^{2}\left[\frac{1}{n(j+1 / 2)}-\frac{3}{4 n^{2}}\right] \tag{9.6.3}
\end{equation*}
$$

9.6.4 The Darwin Term

Definition 9.6.5. The Darwin term is the correct perturbation for spin orbit coupling when $\ell=0$ defined

$$
\begin{equation*}
H_{D}^{\prime}=\frac{\pi \hbar^{3} c \alpha}{2 m^{2} c^{2}} \delta^{(3)}(\mathbf{r}) \tag{9.6.5}
\end{equation*}
$$

Result 9.6.6. For $\ell=0$ the first order spin orbit correction must include the Darwin term.

9.7 Hyperfine Structure

Definition 9.7.1. The hyperfine structure is a perturbation of the hydrogen atom that approximates the effects of the interaction between the spin of the electron and the spin of the nucleus defined

$$
\begin{equation*}
H_{H F}^{\prime}=\frac{8 \pi}{3}\left(\frac{e g_{e}}{2 m_{e} c}\right)\left(\frac{e g_{p}}{2 m_{p} c}\right) \mathbf{S}_{e} \cdot \mathbf{S}_{p} \delta^{(3)}(\mathbf{R}) \tag{9.7.1}
\end{equation*}
$$

Result 9.7.2. The expected value of the product of electron spin and proton spin depends on the coupled spin and the coupled basis for S_{e} and S_{p} is

$$
\begin{gather*}
\left|S=0 m_{s}=0\right\rangle=\frac{1}{\sqrt{2}}\left(|+\rangle_{e}|-\rangle_{p}+|-\rangle_{e}|+\rangle_{e}\right) \tag{9.7.2}\\
\left|S=1 m_{s}=1\right\rangle=|+\rangle_{e}|+\rangle_{p} \tag{9.7.3}\\
\left|S=1 m_{s}=0\right\rangle=\frac{1}{\sqrt{2}}\left(|+\rangle_{e}|-\rangle_{p}-|-\rangle_{e}|+\rangle_{p}\right) \tag{9.7.4}\\
\left|S=1 m_{s}=-1\right\rangle=|-\rangle_{e}|-\rangle_{p} \tag{9.7.5}\\
\left\langle\mathbf{S}_{e} \cdot \mathbf{S}_{p}\right\rangle=\frac{\hbar^{2}}{2}\left[S(S+1)-\frac{3}{2}\right] \tag{9.7.6}
\end{gather*}
$$

Result 9.7.7. The first order hyperfine structure correction for the ground state of hydrogen is

$$
\begin{equation*}
E_{H F}^{(1)}=-E_{1}^{(1)} \alpha^{2}\left(\frac{m_{e}}{m_{p}}\right)\left(\frac{2}{3} g_{e} g_{p}\right)\left[S(S+1)-\frac{3}{2}\right] \tag{9.7.7}
\end{equation*}
$$

9.8 Variational Theory

Theorem 9.8.1. For any $|\psi\rangle$ with Hamiltonian $H,\langle\psi| H|\psi\rangle \geq E_{0}$
Result 9.8.2. For a perturbed system with unperturbed ground state $|0\rangle$ the ground state energy predicted by variational theory $E[\psi]$ differs from the real ground state by a factor proportional to $|\varepsilon|^{2}$.

$$
\begin{gather*}
\psi=a|0\rangle+\varepsilon|f\rangle, \quad\langle\psi \mid \psi\rangle=\langle f \mid f\rangle=\langle 0 \mid 0\rangle=1, \quad\langle 0 \mid f\rangle=0 \tag{9.8.2}\\
E[\psi]-E_{0}=|\varepsilon|^{2}\left(E_{0}+\langle f| H|f\rangle\right) \tag{9.8.3}
\end{gather*}
$$

Chapter 10

Time-Dependent Approximation Methods

10.1 Time-Dependent Perturbation Theory

Definition 10.1.1. The interaction picture is a set of notation for quantum mechanics where only the perturbed component of the states depends on time and only the unperturbed component of the operators depends on time.

$$
\begin{equation*}
|\psi(t)\rangle_{I}=e^{i H_{0} t / \hbar}|\psi(t)\rangle_{S}, \quad O_{I}(t)=e^{i H_{0} t / \hbar} O_{S} e^{-i H_{0} t / \hbar} \tag{10.1.1}
\end{equation*}
$$

Definition 10.1.2. A time-dependent perturbation is a system consisting of a time-dependent small change from a exactly solved system $\hat{H}_{0} . \hat{H}^{\prime}(t)$ is the small change that is applied. The solution of a time-dependent perturbation of an initial eigenstate $|k\rangle$ is found in the interaction picture as time dependent coefficients of the unperturbed eigenstates $|n\rangle$.

$$
\begin{gather*}
\hat{H}=\hat{H}_{0}+\hat{H}^{\prime}(t) \tag{10.1.2}\\
|\psi(t)\rangle_{I}=\sum_{n} c_{n}(t)|n\rangle \tag{10.1.3}\\
c_{n}(t)=c_{n}^{(0)}(t)+c_{n}^{(1)}(t)+\ldots \tag{10.1.4}\\
c_{n}^{(0)}(t)=\delta_{n k} \tag{10.1.5}\\
c_{n}^{(1)}(t)=\frac{-i}{\hbar} \int_{0}^{t} e^{i \omega_{n k} t^{\prime}} H_{n k}^{\prime}\left(t^{\prime}\right) d t^{\prime} \tag{10.1.6}\\
c_{n}^{(2)}(t)=\left(\frac{-i}{\hbar}\right)^{2} \int_{0}^{t} \int_{0}^{t^{\prime}} \sum_{m} e^{i \omega_{n m} t^{\prime}} H_{n m}^{\prime}\left(t^{\prime}\right) e^{i \omega_{m k} t^{\prime \prime}} H_{m k}^{\prime}\left(t^{\prime \prime}\right) d t^{\prime \prime} d t^{\prime} \tag{10.1.7}
\end{gather*}
$$

Proposition 10.1.8. The real component of the second order coefficient to remain in the ground state is related to the first order probability to change states.

$$
\begin{equation*}
2 \operatorname{Re}\left(c_{0}^{(2)}\right)=-\left|c_{1}^{(1)}\right|^{2}=-P^{(1)}(0 \rightarrow 1) \tag{10.1.8}
\end{equation*}
$$

10.2 Constant Perturbation

Definition 10.2.1. The constant perturbation is a perturbation of the harmonic oscillator defined with the perturbation for $V_{0} \in \mathbb{C}$,

$$
H^{\prime}(t)= \begin{cases}0 & t<0 \tag{10.2.1}\\ V & t \geq 0\end{cases}
$$

