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0.1 The SI System

In physics it’s often important to have precisely defined units for the purposes of making very accurate measurements or
simply having a coherent unit system. It’s possible to derive all necessary units from five measurements of length, mass,
time, current, and temperature. The standard SI units for these properties are listed bellow:
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Type Unit Definition
Length Meter(m) Length of distance light in a vacuum travels in 1

299792458 seconds
Mass Kilogram(kg) Defined by fixing the Planck’s constant h = 6.62607015× 10−34kg m2s−1

Time Second(s) Defined by fixing the ground-state hyperfine transition frequency of the caesium-133
atom, to be 9192631770s−1

Current Ampere(A) Defined by fixing the charge of an electron as 1.602176634× 10−19A · s
Temperature Kelvin(K) Defined by fixing the value of the Boltzmann constant k to 1.380649× 10−23kg ·m2s−2K−1

Common prefixes are listed bellow:
Prefix Symbol Definition
mega M 106

kilo k 103

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

Additionally, the following are defined constants:
Symbol Definition

kB kB = 1.380649× 10−23m2 s−2 K−1

h h = 6.62607015× 10−34kgm2 s−1

ℏ ℏ = h
2π ≈ 1.0546× 10−34kg m2s−1

0.2 Introduction

Statistical mechanics is the probabilistic study of extremely complex systems. It seeks to describe the equilibrium or averages
behaviors of such systems. Very often in nature we deal with systems containing so many possible states that it would
be impossible to completely describe and calculate the expected behavior. By focusing on large measurable properties of
such systems and the average behavior of the microstates we can derive there behavior. With a combination of statistical
arguments and microscopic knowledge, statistical mechanics predicts the macro equilibrium properties, which can be used to
derive the laws of thermodynamics.
Thermodynamics is fundamentally connected with statistical mechanics and we will derive the laws of thermodynamics in
the book. For reference here are the laws of thermodynamics.

Law 0.2.1. The 0th Law of Thermodynamics - Thermal equilibrium is transitive. If system A and B are in equilibrium
and systems B and C are also in equilibrium, then systems A and C are in equilibrium.

Law 0.2.2. The 1st Law of Thermodynamics - Heat is a form of energy. Let ∆E be the change in energy, W be the
work done on the system, and Q the heat energy added to the system.

∆E = W +Q

Law 0.2.3. The 2nd Law of Thermodynamics - Total entropy always increases. Let ∆D be the change in entropy and
Sf and Si be the final and initial entropy.

∆S = Sf − Si > 0

∆S =

∫ f

i

1

T
∂Q = Sf − Si

Law 0.2.4. The 3rd Law of Thermodynamics - Absolute Zero. Let S be entropy and T be temperature.

lim
T→0

S(T ) = 0

We will seek to derive each of these laws in this book. Additionally, the logarithm function is used very often in statistical
mechanics, we will used log to refer to the natural logarithm (aka loge).

0.3 Reference

A reference sheet is include on the next page. Click here (exam 1) or here (exam 2) for a pdf file
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Stirling’s approximation - for very large N
the factorial can be very accurately
approximated with the following

logN ! ≈ N logN −N
N ! ≈

√
2πNNNe−N

Fractional uncertainty of X is uncertainty of
expected value per particle.

∆X
N

=

√
〈X2〉 − 〈X〉2

N

Boltzmann’s constant
kB = 1.380649× 10−23m2 s−2 K−1

Entropy S = kBσ, σTOT = σ1 + σ2
Temperature T = τ/kB

Microcanonical Ensemble
Multiplicity function

g = # of microstates, P(n) =
1

g

Expected value of X is the average across all
microstates.

〈X〉 =
∑

n

X(n)P(n) =
1

g

∑

n

X(n)

Entropy can be written in terms of the
multiplicity function.

σ(N,T, U, V, P ) ≡ log[g(N,T, U, V, P )]

Binary System
A binary system is a system of N particles
where each particles has two possible states. Let
N↑ is the number of particle in the up state and
N↓ be the number of particles in the down state.

g(N,N↑) =
N !

N↑!(N −N↑)!
,

N∑

N↑=0

g(N,N↑) = 2N

The binary system can be rewritten in terms of
the differnce between up states and down states
this is the spin excess.

2S = N↑ −N↓

g(N,S) =
N !

(N
2

+ S)!(N
2
− S)!

S=N
2∑

S=−N
2

g(N,N↑) = 2N

Applying Stirling’s approximation to the binary
model, for large N the multiplicity function and
fractional uncertainty are

g(N,S) ≈ g(N, 0)e−2s2/N

g(N,S) ≈
√

2

πN
2Ne−2s2/N

∆S

N
≈ 1√

N

An example of a binary system is N spin 1/2
particles in an external magnetic field B. The
total energy U and magnetization M of the
system are

U =
N∑

i=1

− ~mi · ~B = −(N↑ −N↓)mB = −2SmB

M = 2Sm = −U/B

g(N,U) =
N !

(N
2
− U

2mB
)!(N

2
+ U

2mB
)!

σ(N,S) ≈ −
(
N
2

+ S
)

log
(

1
2

+ S
N

)
−

(
N
2
− S

)
log
(

1
2
− S
N

)

M = Nm tanh(mB/τ)

Einstein Solid
An einstein solid is a system of N atoms where
each atom is modeled as a harmonic oscillator
the energy of the system is determined by the
number of atoms n oscillating at frequency ω.

U = n~ω

g(N,n) =
(n+N − 1)!

n!(N − 1)!

g(N,n) ≈

(
n+N
n

)n (
n+N
n

)N
√

2πn(n+N)/N

Thermal Equilibrium
Temperature

1

τ
=

(
∂σ

∂U

)

N,V

Thermal Equilibrium
(
∂σ1

∂U1

)

N1,V1

=

(
∂σ2

∂U2

)

N2,V2

1

τ1
=

1

τ2
2nd law of thermo - Change in entropy ≥ 0.
Sharpness of Equilibrium For a two binary
systems, the number of states in a configuration
of deviation δ from equilibirum is

g1g2 = (g1g2)maxe

(
− 2δ2

N1
− 2δ2

N2

)

Canonical Ensemble
Partition Function - partition by energy levels
for a fixed temperature

z =
∑

n

e−εn/τ , P(n) =
1

z
e−εn/τ

z =
∑

α

g(εα)e−εα/τ , for degeneracy g(εα)

Expected Value of X is the average across all
energies (Thermal Average).

〈X〉 =
∑

n

X(n)P(n) =
1

z

∑

n

X(n)e−εn/τ

Expected Energy in the canonical ensemble is

U = 〈ε〉 =
1

z

∑

n

εne
−εn/τ

U = 〈ε〉 = τ2
1

z

∂z

∂τ
= τ2

∂

∂τ
log z

The total partition function and expected energy
for N non-interacting particles is simply

zN = zN1

UN = 〈ε〉N = NU1 = N〈ε〉1
(this also applies for expected value of any X)

Theromodynamic Relations
1st Law of Thermo

dU = dQ+ dW = τdσ − PdV

dσ =
1

τ
dU +

P

τ
dV

Temperature τ =
(
∂U
∂σ

)
V

Quasi-static Compression Equilibirum
the equilibrium condition for quasi-static
compression is

(
∂U1

∂V1

)

σ1

=

(
∂U2

∂V2

)

σ2

Helmholtz Free Energy
F = U − τσ = U − ST = −τ log z

dF = −σdτ − PdV
Entropy σ = −

(
∂F
∂τ

)
V
, S = kBσ

Pressure

P = −
(
∂U

∂V

)

σ

= τ

(
∂σ

∂V

)

U

= −
(
∂F

∂V

)

τ

Energy

U = −τ2 ∂

∂τ

(
F

τ

)

Ideal Gas
DeBroglie Thermal Wavelength is the
wavelength of the wave functions of matter at a
given temperature.

λT =

√
2π~2

mτ

Concentration of a system is the inverse of the
volume

n =
1

V
Quantum Concentration is the density of
quantum state per particle. It is used to define
when a system will behave classically (n << nQ)
and when a system will be dominated by
quantum effects (n >> nQ).

nQ =
1

λ3T

Single Particle Ideal Gas is a system in the
canonical ensemble consisting of a signle particle
in a box of side lengths L. The energy levels ,
partition function and average energy are

Enx,ny,nz =
~2

2m

( π
L

)2
(n2
x + n2

y + n2
z)

z1 =
V

λ3T

U1 =
3

2
τ

σ1 = log

(
V

λ3T

)
+

3

2

Gibbs Resolution states that for systems in
the classical regime the partition function for an
ideal gas with N particles is

zN =
1

N !
(z1)N

UN =
3

2
Nτ

σN = N

[
log

(
V

Nλ3T
+

5

2

)]

N-Particle Ideal Gas - by applying Gibbs
resolution and properties of expected values we
can find the classical ideal gas results

PV = Nτ

U =
3

2
Nτ

σ = N

[
log

(
V

Nλ3T

)
+

5

2

]
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Boltzmann’s constant
kB = 1.380649× 10−23m2 s−2 K−1

Entropy S = kBσ
Temperature T = τ/kB

Canonical Ensemble
Partition Function - partition by energy levels
for a fixed temperature

z =
∑

n

e−εn/τ , P(n) =
1

z
e−εn/τ

z =
∑

α

g(εα)e−εα/τ , for degeneracy g(εα)

Expected Value of X is the average across all
energies (Thermal Average).

〈X〉 =
∑

n

X(n)P(n) =
1

z

∑

n

X(n)e−εn/τ

Expected Energy in the canonical ensemble is

U = 〈ε〉 =
1

z

∑

n

εne
−εn/τ

U = 〈ε〉 = τ2
1

z

∂z

∂τ
= τ2

∂

∂τ
log z

The total partition function and expected value
for N non-interacting particles is simply

zN = zN1

〈X〉N = N〈X〉1 ⇒ UN = NU1

Helmholtz Free Energy

F = U − τσ = U − ST = −τ log z

dF = −σdτ − PdV
Entropy σ = −

(
∂F
∂τ

)
V
, S = kBσ

Pressure

P = −
(
∂U

∂V

)

σ

= τ

(
∂σ

∂V

)

U

= −
(
∂F

∂V

)

τ

Energy U = −τ2 ∂
∂τ

(
F
τ

)

Thermal Radiation
Single Frequency Photon Gas is a system in
the canonical ensemble that considers photons of
a specific frequency ω.

εs = s~ω, s = 0, 1, 2, 3, . . .

z =

∞∑

s=0

e−s~ω/τ =
1

1− e−~ω/τ

P(s) =
e−s~ω/τ

z

〈s〉 =
1

z

∞∑

s=0

se−s~ω/τ =
1

e~ω/τ − 1

Photon Gas is an expansion of the single
frequency photon gas that considers all the
possible cavity modes. The modes are 2 fold
degenerate for the 2 independent polarizations.

ωn =
cπ

L

√
n2
x + n2

y + n2
z =

cπn

L

U = 〈ε〉 = 2
∑

n

~ωn
e~ωn/τ − 1

=
π2V

15(~c)3
τ4

Stefan-Boltzmann Law

U

V
=

~
π2c3

∫ ∞

0

ω3

e~ω/τ − 1
dω =

π2

15(~c)3
τ4

Spectral Density Function

∂

∂ω

U

V
=

~
π2c3

ω3

e~ω/τ − 1

Flux Density(σB=Stefan-Boltzmann constant)

Jµ =
1

4

cU

V
= σBτ

4 =
π2

60(~c)3
τ4

Phonons in a Solid (Debye Model)
Phonons in a solid is a system in the canonical
ensemble that is very similar to thermal
radiation except there is 3 fold degeneracy from
3 polarizations of phonons and an upper cutoff
frequency ωD due to the separation distance
between atoms.

ωn =
πcS

L

√
n2
x + n2

y + n2
z =

πcs

L
n

Debye cutoff frequency

ωD = cS

(
6π2N

V

)1/3

, ωD =
πcS

L
nD

Grand Canonical Ensemble
Chemical Potential

µ =

(
∂F

∂N

)

τ,V

µ = τ log

(
Nλ3T
V

)
= τ log

(
n

nQ

)

µ =

(
∂U

∂N

)

σ,V

= −τ
(
∂σ

∂N

)

U,V

Grand Partition Function - partition by
energy levels for a fixed temperature and all
possible values of N

ü =
∑

N

∑

n(N)

e−(εNn −µN)/τ

P(N, εn) =
1

ü
e−(εNn −µN)/τ

Fugacity
λ = eµ/τ

ü =
∑

N

λN
∑

s(N)

e−ε
N
s /τ =

∑

N

λNzN

Expected Value of X is the average across all
energies (Diffusive Average).

〈X〉 =
1

ü

∑

N

∑

s

X(N, s)e−(εNs −µN)/τ

Expected Number of Particles in the grand
canonical ensemble is

N = 〈N〉 = τ
∂

∂µ
log ü = λ

∂

∂λ
log ü

Expected Energy in the grand canonical
ensemble is

U = 〈ε〉 =
1

ü

∑

N

∑

n(N)

εNn e
−(εNn −µN)/τ

U = 〈ε〉 = τ2
(
∂

∂τ
log ü

)

λ

Concentration and DeBroglie Wavelength

n =
N

V
, nQ =

1

λ3T
, λT =

√
2π~2

mτ

Grand Potential
Ω = U − στ − µN

Ω = −τ log ü

σ =

(−∂Ω

∂τ

)

V,µ

P =

(−∂Ω

∂V

)

τ,µ

N =

(−∂Ω

∂µ

)

τ,V

System of Non-interacting Particles
The grand partition function for a system with
M energy states where nα is the number of
particles occupying a state is

ü =

M∏

α=1

üα, üα =
∑

nα

e−nα(εα−µ)/τ

U =
M∑

α=1

εαf(εα), N =
M∑

α=1

f(εα)

Fermions
nα = 0, 1

üα = 1 + e−(εα−µ)/τ = 1 + λe−εα/τ

Fermi-Dirac Distribution is the expected
number of a particles in a particular energy εα.

〈nα〉 = f(εα) =
1

e(εα−µ)/τ + 1
=

1

λ−1eεα/τ + 1

For τ → 0: f(εα) = θ(εα − µ)

Bosons (Bonsons)

nα = 0, 1, 2, 3, . . .

üα =
1

1− e−(εα−µ)/τ
=

1

1− λe−εα/τ
Boson Distribution is the expected number of
a particles in a particular energy εα.

〈nα〉 = f(εα) =
1

e(εα−µ)/τ − 1
=

1

λ−1eεα/τ − 1

Ideal Gas
Both fermions and bosons behave identically at
the classical limit εα − µ >> τ .

〈nα〉 = f(εα) = e−(εα−µ)/τ

ü =
∑

N

λNzN =
∑

N

λN
1

N !
zN1 = eλz1

λ =
n

nQ
, PV = Nτ, U =

3

2
Nτ, µ = τ log

n

nQ

σ = N

[
log

nQ

n
+

5

2

]
, F = Nτ

[
log

n

nQ
− 1

]

Heat Capacity measures the change in heat
energy per unit temperature

CP > CV , CV =

(
∂U

∂T

)

V

= τ

(
∂σ

∂T

)

V

CP =

(
∂U

∂T

)

P

+ P

(
∂V

∂T

)

P

= τ

(
∂σ

∂T

)

P

Monoatmc gas CV = 3
2
NkB , CP = 5

2
NkB

Isothermal Expansion σf − σi = N log
Vf
Vi

Q = Nτ log
Vf
Vi

Isoentropic Expansion
τf
τi

=
(
Vi
Vf

)2/3

Internal Excitations
Expansion of the ideal gas to take into account
the additional energy states from internal
excitations.

zint =
∑

α

e−εα/τ , ü = 1 + λzinte
−εn/τ

Internal Excitation Corrections

λ =
n

nQzint
, µ = τ

(
log

n

nQ
− log zint

)

F = Nτ

[
log

n

nQ
− 1

]
−Nτ log zint

σ = N

[
log

n

nQ
+

5

2

]
−
(
∂Fint

∂τ

)

V

DOG (bork)
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Chapter 1

Microcanonical Ensemble

Throughout this book we will refer to microscope and macroscopic systems. Using Quantum mechanics one can predict the
behavior of a small number of particles or similar small systems with high levels of symmetry. However, as the number
of particles increases, Schrödinger’s becomes practically impossible to solve. However the microscopic quantum states of
a system determine many measurable macroscopic properties, such as temperature, energy, volume or pressure. Towards
making predictions about these macroscopic properties is is useful to count the number of possible microstates for a given
macrostate.

Definition 1.0.1. The microcanonical ensemble is the system of calculations where the total energy, particle number,
and volume are fixed.

1.1 Multiplicity Functions

Definition 1.1.1. A Multiplicity function is the number of microstates that produce a given macrostate denoted

g(N,T, U, V, P ) = # of microstates that fit the given macrostate

Assumption 1.1.2. Boltzmann’s Assumption - All accessible microstates are equally probable. Let P (n) be the proba-
bility that a system is in microstate n.

P(n) =
1

g(N,T, U, V, P )

Definition 1.1.3. The entropy of a system is defined as the natural log of the multiplicity function.

σ(N,T, U, V, P ) ≡ log[g(N,T, U, V, P )]

Definition 1.1.4. The expected value of a property X of a system is determined by the average of that value across all
possible microstates.

⟨X⟩ =
∑
n

X(n)P(n) =
1

g

∑
n

X(n)

Definition 1.1.5. The fractional uncertainty of a property X is defined in terms of the expected value.

∆X
N

=

√
⟨X2⟩ − ⟨X⟩2

N
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1.2 Binary System

Definition 1.2.1. A binary system is a system of N particles where each particles has two possible states. Let N↑ is the
number of particle in the up state and N↓ be the number of particles in the down state.

g(N,N↑) =
N !

N↑!(N −N↑)!
,

N∑
N↑=0

g(N,N↑) = 2N

Corollary 1.2.2. The binary system can be rewritten in terms of the differnce between up states and down states.

2S = N↑ −N↓

g(N,S) =
N !

(N2 + S)!(N2 − S)!
,

S=N
2∑

S=−N
2

g(N,N↑) = 2N

Theorem 1.2.3. Stirling’s Approximation - for very large N the factorial can be very accurately approximated with the
following

logN ! ≈ N logN −N

N ! ≈
√
2πNNNe−N

Proposition 1.2.4. Applying Stirling’s approximation to the binary model, for large N the multiplicity function and
fractional uncertainty are

g(N,S) ≈ g(N, 0)e−2s2/N

g(N,S) ≈
√

2

πN
2Ne−2s2/N

∆S

N
≈ 1√

N

Example. Consider a system of N spin 1/2 particles in an external magnetic field B. The total energy U and magnetization
M of the system are

U =

N∑
i=1

−m⃗i · B⃗ = −(N↑ −N↓)mB = −2SmB

M = 2Sm = −U/B

g(N,U) =
N !

(N2 − U
2mB )!(N2 + U

2mB )!

σ(N,S) ≈ −
(
N

2
+ S

)
log

(
1

2
+

S

N

)
−
(
N

2
− S

)
log

(
1

2
− S

N

)
M = Nm tanh(mB/τ)

Definition 1.2.5. An einstein solid is a system of N atoms where each atom is modeled as a harmonic oscillator the total
energy of the system is determined by the number of atoms n oscillating at frequency ω.

U = nℏω

g(N,n) =
(n+N − 1)!

n!(N − 1)!

g(N,n) ≈
(
n+N
n

)n (n+N
n

)N√
2πn(n+N)/N
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1.3 Thermal Equilibrium

Since the uncertainty of our system is extremely small for large N , the most probable state as determined by Boltzmann’s
assumption will determine the macrostate of the system.

Definition 1.3.1. The equilibirum state two systems is the most probable macrostate of the shared system.

gTOT (N,V, U) =
∑
U ′

1

g1(N1, V1, U
′
1)g2(N2, V2, U − U ′

1)

P(U ′
1) =

g1(N1, V1, U
′
1)g2(N2, V2, U − U ′

1)

gTOT (N,V, U)

Example. Consider two isolated binary systems
g1(4, 2) and g2(6, 0)

The initial condition of the two states are N1 = 4, S1 = 2 and N2 = 6, S2 = 0. Now, allowing contact between the two
systems the equilibrium state is the most probable state that conserves energy. To find this we need to maximize the total
multiplicity function

g(N1 +N2, S
′
1, S

′
2) = g1(N1, S

′
1)g2(N2, S

′
2)

For this simple system the max is found when S′
1 = 1 and S′

2 = 1.

Definition 1.3.2. Thermal equilibrium is reached when the energy derivative of the total multiplicity function is zero.(
∂σ1

∂U1

)
N1,V1

=

(
∂σ2

∂U2

)
N2,V2

Definition 1.3.3. The temperature of a system is defined with the derivative of entropy σ in terms of energy U . Kelvin
temperature T is directly proportional to the fundamental temperature via the Boltzmann constant kB .

1

τ
=

(
∂σ

∂U

)
N,V

τ = kBT
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Chapter 2

The Canonical Ensemble

Up until this point we’ve been working with closed systems where to total amount of energy is fixed. If the real world it is
often very difficult to thermally isolate a system. It is must easier to operate at a fixed temperature and a fixed number of
particles. We separate each of these cases into ensembles.

Definition 2.0.1. The canonical ensemble is the system of calculations where the temperature and particle number are
fixed.

2.1 Partition Function

Definition 2.1.1. The partition function determines how we calculate probability. For a fixed temperature we partition
by energy levels. The probability of a particular energy εn is given by

P(εn) =
1

z
e−εn/τ

z =
∑
n

e−εn/τ

Corollary 2.1.2. For systems with degeneracy g(εα) for each distinct energy level εα, the partition function can be rewritten.

z =
∑
α

g(εα)e
−εα/τ

Definition 2.1.3. The thermal average of X is the average across all energies).

⟨X⟩ =
∑
n

X(n)P(n) =
1

z

∑
n

X(n)e−εn/τ

Definition 2.1.4. The expected energy in the canonical ensemble is

U = ⟨ε⟩ = 1

z

∑
n

εne
−εn/τ

U = ⟨ε⟩ = τ2
1

z

∂z

∂τ
= τ2

∂

∂τ
log z

Example. One and many simple harmonic oscillators at temperature τ . Starting with a system of just one harmonic oscillator
we find

εn =

(
n+

1

2

)
ℏω

z1 =
∑
n

e−(n+
1
2 )

ℏω
τ =

e−ℏω/2τ

1− e−ℏω/τ

U1 = ⟨ε⟩ = ℏω
2

+
ℏωe−ℏω/τ

1− e−ℏω/τ
=

ℏω
2

+
ℏω

e−ℏω/τ − 1

Now, consider a system of N simple harmonic oscillators at temperature τ .

zN =
∑

n1,n2,...,nN

e−
1
τ (εn1

+εn2
+···+εnN

) = zN1

UN = ⟨ϵ⟩ = τ2
∂

∂τ
log zN = Nτ2

∂

∂τ
log z =

Nℏω
2

+
Nℏω

e−ℏω/τ − 1
= NU1

8



2.2 Reversible Processes

Definition 2.2.1. A quasi-static process is an idealization where parameters are changed so slowly that the system is
indefinitely close to thermal and mechanical equilibrium during the process.

Definition 2.2.2. A reversible process is a quasi-static process where the system retraces its steps if you reverse the
changes in the parameters.

Definition 2.2.3. The pressure of a system is defined as the negative derivative of energy with respect to volume.

Pn = −
(
∂εn
∂V

)
σ

P = ⟨−∂εn
∂V

⟩ =
∑
n

−∂εn
∂V

e−εn/τ

Proposition 2.2.4. For quasi-static compression the pressure is simply the derivative of energy with respect to volume.

P = − ∂

∂V

1

z

∑
n

εne
−εn/τ = −

(
∂U

∂V

)
σ

= τ

(
∂σ

∂V

)
U

2.3 Helmholtz Free Energy

Definition 2.3.1. The Helmholtz Free Energy F of a system is defined in terms of the energy U the entropy σ, S and
the temperature τ, T .

F = U − στ = U − ST

Proposition 2.3.2. Equilibrium in the canonical ensemble is achieved when the Helmoltz free energy F is minimized

∂F = 0, ∆F ≤ 0

Proposition 2.3.3. The entropy, pressure, and expected energy of a system in the canonical ensemble can be written in
terms of the Helmholtz free energy.

σ = −
(
∂F

∂τ

)
V

, P = −
(
∂F

∂V

)
τ

, U = −τ2
∂

∂τ

(
F

τ

)
Proposition 2.3.4. The Helmholtz free energy is determined by the temperature τ and partition function z.

F = −τ log z

z = e−F/τ

Definition 2.3.5. Maxwell relations are relations that are derive from the following form

df = Adx+Bdy

∂

∂y

∂f

∂x
=

∂

∂x

∂f

∂y

Proposition 2.3.6. Using Maxwell relations we can derive the following

dU = τdσ − PdV(
∂σ

∂V

)
τ

=

(
∂P

∂τ

)
V(

∂P

∂σ

)
V

= −
(
∂τ

∂V

)
σ
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2.4 Ideal Gas

Definition 2.4.1. The concentration of a system is the inverse of the volume

n =
1

V

Definition 2.4.2. The quantum concentration is the density of quantum state per particle. It is used to define when a
system will behave classically (when n << nQ) and when a system will be dominated by quantum effects (when n >> nQ).

nQ =
1

λ3
T

Definition 2.4.3. The DeBroglie thermal wavelength is the wavelength of the wave functions of matter at a given
temperature.

λT =

√
2πℏ2
mτ

Definition 2.4.4. Single particle ideal gas is a system in the canonical ensemble consisting of a single particle in a box
of side lengths L. The energy levels, partition function and average energy are

Enx,ny,nz
=

ℏ2

2m

(π
L

)2
(n2

x + n2
y + n2

z)

z1 =
∑

nx,ny,nz

e
−Enx,ny,nz

τ =

(
L

√
mτ

ℏ22π

)3

=
V

λ3
T

=
nQ

n
=

V

λ3
T

U1 =
3

2
τ

σ1 = log

(
V

λ3
T

)
+

3

2

Proposition 2.4.5. Gibbs resolution states that for systems in the classical regime the partition function for an ideal gas
with N particles is

zN =
1

N !
(z1)

N

UN =
3

2
Nτ

σN = N

[
log

(
V

Nλ3
T

+
5

2

)]
Law 2.4.6. Ideal gas law states that the pressure and volume are related to temperature and particle number

PV = Nτ

PV = NkBT

2.5 Ideal Diatomic Gas

Definition 2.5.1. Single particle diatomic gas is a system in the canonical ensemble consisting of a a single particle in
a box with vibration and rotational excitation.The energy levels, partition function and average energy are

Eρ⃗,n,ℓ =
ρ2

2m
+ (n+

1

2
)ℏωvib +

ℏ2

2I
ℓ(ℓ+ 1)

z1 =
∑
ρ⃗,n,ℓ

(2ℓ+ 1)e−[EKE+EV ib+RRot]/τ =
V

λ3
T

+
∑
n

e−(n+ 1
2 )ℏω/τ +

∑
ℓ

(2ℓ+ 1)e
ℏ2ℓ(ℓ+1)

2I /τ

U1 =
3

2
Nτ + δUV ib + δURot

U1 = −τ log

(
V

λ3
T

)
+ δFV ib + δFRot
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2.6 Thermal Radiation

Definition 2.6.1. Photons - For light at a given frequency ω = 2πf , the energy levels are

εs = sℏω, s = 0, 1, 2, 3, . . .

These energy levels are very similar to the simple harmonic oscillator En = (n+ 1
2 )ℏω. So we can use the example from

earlier to derive the partition function.

z =

∞∑
s=0

e−sℏω/τ =
1

1− e−ℏω/τ

P(s) =
e−sℏω/τ

z

⟨s⟩ = 1

z

∞∑
s=0

se−sℏω/τ =
1

eℏω/τ − 1

⟨ϵ⟩ = ℏω
eℏω/τ − 1

Definition 2.6.2. A thermal cavity or photon gas is a system in the microcanonical ensemble that describes the extension
of a single photon to account for all the possible frequencies in a chamber. Consider a cubic thermal cavity of side length L.
There are two possible polarizations for each of the three directions in the cube.

ωN =
cπ

L

√
n2
x + n2

y + n2
z =

cπ

L
n⃗

U = ⟨ϵ⟩ = 2
∑
n

ℏωn

eℏωn/τ − 1
=

ℏV
π2c3

∫ ∞

0

ω3

eℏω/τ − 1
dω =

π2V

15(ℏc)3
τ4

σ =
4π2V

45(ℏc)3
τ3

P =
1

3

U

V

Definition 2.6.3. The Stefan Boltzmann law states that the energy per unit volume of a thermal cavity at temperature
τ is

U

V
=

ℏ
π2c3

∫ ∞

0

ω3

eℏω/τ − 1
dω =

π2

15(ℏc)3
τ4

In classical physics, this energy is defined with an infinite sum that doesn’t converge. Therefore, the energy is infinite.
This is known as the ultraviolet catastrophe.

Definition 2.6.4. The spectral density function of a thermal cavity is the expected energy per unit volume per unit
frequency at a given frequency ω

∂

∂ω

U

V
=

ℏ
π2c3

ω3

eℏω/τ − 1

Proposition 2.6.5. The maximal spectral frequency of a radiating object at fixed temperature is found when

3− 3e−ℏωmax/τ =
ℏωmax

τ

τ ≈ ℏωmax

2.82

Proposition 2.6.6. From the 1st law of thermodynamics, entropy of thermal radiation is

σ(τ, V ) =
4π2V

45(ℏc)3
τ3

Proposition 2.6.7. Furthermore the pressure of thermal radiation is

P =
1

3

U

V
=

π2

45(ℏc)3
τ4
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Proposition 2.6.8. The Heat capacity of the photon gas is

Cv =

(
∂U

∂T

)
N,V

=
4V π2

15(ℏc)3
τ3

Towards deriving some useful insights from this model we will consider a small hole in the side of the cavity. This
represents a perfect black body. From the energy density and some geometry we can show that

Jµ =
U

V

U

V
=

π2

60(ℏc)3
τ4

Definition 2.6.9. The Flux density is the energy emitted per unit time per unit area from a black body. It is related to
the temperature by the Stefan Boltzmann constant denoted σB .

Jµ =
π2

60(ℏc)3
τ4 =

π2k4B
60(ℏc)3

T 4 = σBT
4

Definition 2.6.10. The emissivity of an object is a factor between 0 and 1 that determines how much radiation is emitted
or reflected. An emissivity of 1 is a perfect black body and 0 is a perfect mirror.

Jreal = e · Jµ

2.7 Phonons in a Solid

The excitations that we have been considering for light can also be generalized to describe vibrations and sound waves in
solid materials.

Definition 2.7.1. A phonon is a vibrational excitation in a solid. We will consider N atoms in a lattice. The energy levels
are

εs = sℏω, s = 0, 1, 2, 3, . . .

The energy levels can be used identically to the photon case to derive a partition function and the average number of phonons
at a given frequency and temperature.

z =

∞∑
s=0

e−sℏω/τ =
1

1− e−ℏω/τ

P(s) =
e−sℏω/τ

z

⟨s⟩ = 1

z

∞∑
s=0

se−sℏω/τ =
1

eℏω/τ − 1

⟨ϵ⟩ = ℏω
eℏω/τ − 1

Definition 2.7.2. A phonon gas is a system in the microcanonical ensemble that describes the extension of a single phonon
to account for the distribution of frequencies in a solid. The system uses a model of the distribution of frequencies to make
predictions

2.7.3 Einstein Model

The einstein model assumes that all the oscillations in a solid are at the same frequency ω.

Proposition 2.7.4. With the Einstein model the average energy and heat capacity are

U =
3Nℏω

eℏω/τ − 1

CV = kB

(
∂U

∂τ

)
V,N

= 3N

(
ℏω
τ

)2
eℏω/τ

(eℏω/τ − 1)2
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2.7.5 Debye Model

The Debye model takes into account the possible standing waves in the solid. For a given speed of sound cs the Debye
frequencies are

ωnx,ny,nz
=

πcS
L

√
n2
x + n2

y + n2
z =

πcs
L

n⃗

For phonons, there are three modes of polarization. Unlike the photon case where the frequency continues to infinity,
there is a maximum oscillation frequency that the solid can support. This frequency is determined by the spacing of the
lattice and the speed of sound.

Definition 2.7.6. The Debye cutoff frequency ωD is the maximum oscillation frequency that the solid with N atoms,
volume V , and speed of sound cS can support.

ωD = cS

(
6π2N

V

)1/3

=
πcS
L

n⃗D

Proposition 2.7.7. The average energy of the phonon gas is determined by the following integral.

U =
3V

2π2

ℏ
c3S

∫ ωD

0

ω3dω

eℏω/τ − 1

In the dimensionless variable x = ℏω/τ the energy is

U =
3

2

V τ4

π2(ℏcS)3

∫ xD

0

x3dx

ex − 1
xD =

ℏωD

τ

Proposition 2.7.8. In the low τ limit(τ << ℏω), this integral can be evaluated exactly. The average energy and heat
capacity at this limit are

U ≈ 3c3Sτ
4π4

5ω3
Dπ2(ℏcs)3

CV =

(
∂U

∂T

)
N,V

=
12π4NkB
5(ωDℏcS)3

T 3
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Chapter 3

Grand Canonical Ensemble

Up until this point we’ve been working with a system where to the total number of particles is fix. In the Grand Canonical
Ensemble the particle number of the system is allowed to exchange with the environment.

Definition 3.0.1. The chemical potential can be used to determine if a system is in diffusive equilibrium.

µ =

(
∂F

∂N

)
τ,V

Remark. When several species of particles are present each species has it’s own µ. In the grand canonical ensemble, each of
these chemical potentials is fixed by the environment.

Proposition 3.0.2. Using thermodynamic relations we can derive the following alternate equations for the chemical potential

µ = τ log

(
Nλ3

T

V

)
= τ log

(
n

nQ

)
= −τ

(
∂σ

∂N

)
U,V

=

(
∂U

∂N

)
σ,V

3.1 Grand Partition Function

Definition 3.1.1. The grand partition function determines the probability of a given energy. For a fixed temperature
and chemical potential, the probability of a particular energy εn is given by

P(N, εn) =
1

ü
e−(εNn −µN)/τ

ü =
∑
N

λN
∑
s(N)

e−εNs /τ =
∑
N

λNzN

Definition 3.1.2. The fugacity is the effective partial pressure of a real gas denoted λ that can be used to write the grand
partition function.

λ = eµ/τ

ü =
∑
N

λN
∑
s(N)

e−εs/τ

Definition 3.1.3. The diffusive average of X is the average across all energies

⟨X⟩ = 1

ü

∑
N

∑
s

X(N, s)e−(εNs −µN)/τ

Proposition 3.1.4. The average number of particles can found from the grand partition function.

N = ⟨N⟩ = τ
∂

∂µ
log ü = λ

∂

∂λ
log ü

Proposition 3.1.5. the expected energy can be found from the grand partition function.

U = ⟨ε⟩ = 1

ü

∑
N

∑
n(N)

εNn e−(εNn −µN)/τ = τ2
(

∂

∂τ
log ü

)
λ
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3.2 Grand Potential

Definition 3.2.1. The grand potential is a measurement similar to the Helmholtz free energy to determine if a system is
in equilibrium.

Ω = U − στ − µN

Proposition 3.2.2. Equilibrium in the grand canonical ensemble is achieved when the grand potential is minimized.

∂Ω = 0, ∆Ω ≤ 0

Proposition 3.2.3. The grand potential can be determined from the grand partition function

Ω = −τ log ü

Proposition 3.2.4. The entropy, pressure, and average particle number can be written in therms of the grand potential.

σ = −
(
∂Ω

∂τ

)
V,µ

, P = −
(
∂Ω

∂V

)
τ,µ

, N = −
(
∂Ω

∂µ

)
τ,V

3.3 Fermions and Bosons

Proposition 3.3.1. The grand partition function for a system with M energy states where nα is the number of particles
occupying a state is

ü =

M∏
α=1

üα, üα =
∑
nα

e−nα(εα−µ)/τ

For such a system with energy states and particles to occupy those states there are two possibilities.

Definition 3.3.2. A fermion is a particle with half integer spin. Each energy state can only be occupied by 1 particle.

nα = 0, 1

üα = 1 + e−(εα−µ)/τ = 1 + λe−εα/τ

Definition 3.3.3. The fermi-dirac distribution is the expected number of a particles in a particular energy state εα for
fermions.

⟨nα⟩ = f(εα) =
1

e(εα−µ)/τ + 1
=

1

λ−1eεα/τ + 1

Proposition 3.3.4. For the zero temperature limit τ → 0, the fermi dirac distribution is a step function centered at the
chemical potential.

f(εα) = θ(εα − µ)

Definition 3.3.5. A boson is a particle with integer spin. Each energy state can be occupied by many particles.

nα = 0, 1, 2, 3, . . .

üα =
1

1− e−(εα−µ)/τ
=

1

1− λe−εα/τ

Definition 3.3.6. The bose-einstein distribution is the expected number of particles in a particilar energy state εα for
bosons.

⟨nα⟩ = f(εα) =
1

e(εα−µ)/τ − 1
=

1

λ−1eεα/τ − 1

Proposition 3.3.7. the expected energy and expected number of particles for both fermions and bosons can be found from
the expected occupancy function

U =

M∑
α=1

εαf(εα), N =

M∑
α=1

f(εα)

Proposition 3.3.8. Both fermions and bosons behave identically at the classical limit εα − µ >> τ . This agrees with Gibb
resolution from the canonical ideal gas.

⟨nα⟩ = e−(εα−µ)/τ

log ü = λz1
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3.4 Grand Ideal Gas

We now have the definitions to consider the ideal gas in the grans canonical ensemble.

Proposition 3.4.1. For an ideal gas in the grand canonical ensemble the following equations hold

⟨nα⟩ = f(εα) = e−(εα−µ)/τ

ü =
∑
N

λNzN =
∑
N

λN 1

N !
zN1 = eλz1

λ =
n

nQ
, PV = Nτ, U =

3

2
Nτ, µ = τ log

n

nQ

σ = N

[
log

nQ

n
+

5

2

]
, F = Nτ

[
log

n

nQ
− 1

]
Definition 3.4.2. The heat capacity of a material is the change in heat energy with respect to temperature when fixing
volume or pressure.

(∂Q)V = CV ∂T

(∂Q)P = CP∂T

Proposition 3.4.3. For an ideal gas the heat capacities with fixed volume and pressure are

CV =

(
∂U

∂T

)
V

= τ

(
∂σ

∂T

)
V

CP =

(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

= τ

(
∂σ

∂T

)
P

CP > CV

Proposition 3.4.4. For a monoatomic ideal gas the heat capacities are

CV =
3

2
NkB

CP =
5

2
NkB

Example. Isothermal Expansion - Consider the case of the slow isothermal expansion of an ideal gas. In this case, no
energy is exchanged with the environment. Work is done on the piston and heat energy flows into the system.

∆U = 0, U =
3

2
Nτ, Q > 0

σf − σi = N log
Vf

Vi

Q = Nτ log
Vf

Vi

Example. Isoentropic Expansion - Consider the case of the slow isoentropic expansion of an ideal gas. In this case, the
entropy of the gas is fixed.

∆σ = 0, Q = 0

τf
τi

=

(
Vi

Vf

) 2
3
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3.4.5 Ideal Gas with Internal Degrees of Freedom

We can extend this model of an ideal gas to consider the effect of internal degrees of freedom.

Definition 3.4.6. An ideal gas with internal degrees of freedom is an expansion of the ideal gas to take into account
the additional energy states from internal excitations.

zint =
∑
α

e−εα/τ

ü = 1 + λzinte
−εn/τ

Proposition 3.4.7. For an ideal gas with internal degrees of freedom the following equations hold

λ =
n

nQzint

µ = τ

(
log

n

nQ
− log zint

)
F = Nτ

[
log

n

nQ
− 1

]
−Nτ log zint

σ = N

[
log

n

nQ
+

5

2

]
−
(
∂Fint

∂τ

)
V

3.5 Fermi Gas

At low temperature the fermi-dirac distribution acts like a step function at µ. This critical energy emerges at quantum
concentrations.

Definition 3.5.1. The fermi energy denoted εF is the highest occupied energy level at τ = 0

εF = µ(τ = 0)

Definition 3.5.2. The ground state energy is the expected energy at zero temperature.

U0 = U(τ = 0)

Definition 3.5.3. The density of states denoted D(ε) is number of available states per unit energy.

⟨X⟩ =
∑
n

f(εn)Xn =

∫ ∞

0

D(ε)f(ε)X(ε)dε

Proposition 3.5.4. The expected energy and expected number of particles can be written in terms of the density of states

U =

∫ ∞

0

εD(ε)f(ε)dε

N =

∫ ∞

0

D(ε)f(ε)dε

At τ = 0, the integrals can be reduced

U(τ = 0) =

∫ εF

0

εD(ε)dε

N(τ = 0) =

∫ εF

0

D(ε)dε
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Consider a fermi gas of N spin- 12 particles in a 3d box at τ = 0.

εn =
ℏ2π2

2mL2
n2, n = 1, 2, 3, 4, . . .

εF =
ℏ2π2

2mL2
n2
F

Proposition 3.5.5. By counting the N particles in the gas we can find the fermi energy.

N = π
n3
F

3
⇒ nf =

(
3N

π

)1/3

εF =
ℏ2

2m

(
3π2N

V

)2/3

=
ℏ2

2m

(
3π2n

)2/3
= τF

Proposition 3.5.6. Using this temperature, we can find the ground state energy and pressure

U0 =
3

5
NεF

P0 =
2

3

U0

V

Proposition 3.5.7. For a fermi gas the density of states is

D(ε) =
V

2π2

(
2m

ℏ2

)3/2

ε1/2

Proposition 3.5.8. For small τ << εF , the chemical potential and expected energy are

µ(τ << εF ) = εF

(
1− π2

12

τ2

ε2F

)

U(τ << εF ) = U0 +
π2

4

(
τ

εF

)2

NεF

3.6 Bose-Einstein Condensate

Bosons at quantum concentration form a Bose-Einstein condensate. At τ = 0 all the particles can fit in the ground state.
For low temperature the expected number of particles in the ground state approaches N .

Definition 3.6.1. The Condensate denoted N0(τ) is the number of particles in the ground state.

N0(τ) = ⟨nε0⟩ = f(ε0, τ) =
1

e(ε0−µ)/τ − 1

lim
τ→0

N0(τ) = N

Definition 3.6.2. The Normal Phase denoted Ne(τ) is the number of particles not in the ground state.

Ne(τ) = N −N0(t)

Proposition 3.6.3. At low τ ≈ 0, the following limits apply

N0(τ) ≈
τ

ε0 − µ

µ ≈ ε0 −
τ

N
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Consider a boson gas of N spin- 12 particles in a 3d box at τ ≈ 0.

εn =
ℏ2π2

2mL2
(n2

x + n2
y + n2

z) =
ℏ2π2

2mL2
n⃗2, n⃗ = 1, 2, 3, 4, . . .

Proposition 3.6.4. For a 3d boson gas the condensate is

N0 =
1

e−µ/τ − 1
=

1

λ−1 − 1

Proposition 3.6.5. For a 3d boson gas the normal phase is

Ne =
V

4π2

(
2m

ℏ

)3/2 ∫ ∞

0

ε1/2dε

λ−1eε/τ − 1

Proposition 3.6.6. For a 3d boson gas the maximum possible value of the normal phase at a fixed temperature τ is

(Ne)max =
V

4π2

(
2m

ℏ2

)3/2

τ3/2
∫ ∞

0

x1/2dx

ex − 1
≈ 2.612

( mτ

2πℏ2
)3/2

= 2.612nQV

Ne(τ)

N
= 2.612

nQ

n

Definition 3.6.7. The critical concentration denoted nE is the smallest concentration with bose-einstein condensation.

nE =
(Ne)max

V
= 2.612nQ

Definition 3.6.8. The critical temperature denoted τE is the maximum temperature with bose-einstein condenstation.

τE =
2πℏ2

m

( n

2.612

)3/2
Proposition 3.6.9. For τ < τE the normal phase and condensate are approximately

Ne(τ) = N

(
τ

τE

)3/2

N0(τ) = N

(
1−

(
τ

τE

)3/2
)
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Chapter 4

Thermodynamics

Now we have developed the necessary technology to derive derive the laws of thermodynamics. This chapter will focus on
applications of thermodynamics and the macroscopic implications of the relations we have derived.

Law 4.0.1. The First Law of Thermodynamics states that the total energy of a closed system is conserved.

dU = d̄Q+ d̄W, for reversible process: dU = τdσ + d̄W

Definition 4.0.2. Work is energy transfer that does not change entropy.

Definition 4.0.3. Heat is energy transfer that does change entropy.

4.1 Heat Engines and Refrigerators

Definition 4.1.1. A heat engine is any devices that converts transfer of heat into work, QH/σH denotes the heat/entropy
transferred from the hot reservoir, QC/σC denotes the heat/entropy transferred to the cold reservoir, and W denotes the
work extracted.

Proposition 4.1.2. For a reversible heat engine, the entropy transferred from/to the hot/cold reservoir is determined by

σH =
QH

τH
, σC =

QC

τC

Definition 4.1.3. The engine efficiency denoted η is the amount of work extracted per unit of heat transferred.

η =
W

QH
=

QH −QC

QH

Definition 4.1.4. The carnot efficiency denoted ηc is the engine efficiency of a reversible heat engine.

ηc = 1− QC

QH
= 1− τC

τH

Proposition 4.1.5. The engine efficiency of an engine is less than or equal to the carnot efficiency.

η ≤ ηc

(
QC

QH

)
real

≥
(
QC

QH

)
rev

Proposition 4.1.6. The carnot engine cycle can be constructed by four segments of expansion and compression.

1. Isothermal expansion from σL to σH .

2. Isoentropic expansion from τH to τC .

3. Isothermal compression from σH to σL.

4. Isoentropic compression from τC to τH .
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Definition 4.1.7. A refrigerator is any device that converts work into transfer of heat, QH/σH denotes the heat/entropy
transferred to the hot reservoir, QC/σC denotes the heat/entropy transferred from the cold reservoir, and W denotes the
work used.

Proposition 4.1.8. For a reversible refrigerator, the entropy transferred to/from the hot/cold reservoir is determined by

σH =
QH

τH
, σC =

QC

τC

Definition 4.1.9. The coefficient of performance denoted γ is the amount of heat transferred per unit of work used.

γ =
QH

W
=

QC

QH −QC

Definition 4.1.10. The carnot coefficient of performance denoted γc is the coefficient of performance of a reversible
refrigerator.

γc =
1

QH

Qc
− 1

=
1

τH
τC

− 1
=

τC
τH − τC

Proposition 4.1.11. The coefficient of performance of a refrigerator is less than or equal to the carnot coefficient of
performance.

γ ≤ γc

(
QH

QC

)
real

≥
(
QH

QC

)
rev

Proposition 4.1.12. An analygous carnot refrigerator cycle can be constructed by simply reversing the direction of the
carnot engine cycle.

4.2 Gibbs free energy

The isothermal–isobaric ensemble describes systems with fixed temperature, pressure and particle number (τ, P,N). Such a
system is common under atmospheric conditions and there is a concept analogous to the Helmholtz free energy for this case.

Definition 4.2.1. The Gibbs free energy denoted G is minimized at equilibrium for a system in the isothermal–isobaric
ensemble.

G = U − τσ + PV

Definition 4.2.2. The effective work done by a system is work done by a system other than from volume change denoted
W ′.

Proposition 4.2.3. For reversible processes the effective work done is equal to the change in Gibbs free energy.

d̄W ′ = dG

Proposition 4.2.4. The entropy, volume, and chemical potential of a system in the isothermal–isobaric ensemble can be
written in terms of the Gibbs free energy.

σ = −
(
∂G

∂τ

)
P,N

, V = −
(
∂G

∂P

)
τ,N

, µ = −
(
∂G

∂N

)
τ,P

4.3 Enthalpy

For systems at constant pressure but not fixed temperature, there is another concept analogous to the Helmholtz free energy.

Definition 4.3.1. The enthalpy denoted H is minimized at equilibrium for a system at constant pressure.

H = U + PV

Proposition 4.3.2. For reversible processes the effective work done is equal to the difference in change in enthalpy and
change in heat energy.

d̄W ′ = dH − dQ

Proposition 4.3.3. The temperature, volume, and chemical potential of a system in the isothermal–isobaric ensemble can
be written in terms of the Gibbs free energy.

τ =

(
∂H

∂σ

)
P,N

, V =

(
∂H

∂P

)
σ,N

, µ =

(
∂H

∂N

)
σ,P
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4.4 Chemical Reactions

Proposition 4.4.1. The Gibbs free energy can be written in terms of the chemical potential and particles number.

G = Nµ

For a chemical reaction we often need to consider multiple species of particles that react with eachother. To do this we
will consider the total Gibbs free energy of the system.

Proposition 4.4.2. The total Gibbs free energy for a system of multiple particles is

G =
∑
j

Njµj

Definition 4.4.3. The chemical equation number ν is the sign and magnitude of dN relative to the other components
of the reaction. For products ν < 0 and for reactants ν > 0.

Proposition 4.4.4. Equilibrium for a system of multiple particles is reached when∑
j

dNjµj = 0 = dG

∑
j

νjµj = 0

Proposition 4.4.5. Law of Mass Action - For the ideal gas model the equilibirum constant K(τ) only depend on τ .

K(τ) =
∏
j

n
νj

j =
∏
j

n
νj

Q,jZ
νj

int,j =
∏
j

n
νj

Q,je
−νjF

int
j /τ

Let Ψ(x, y, t = 0) =

iℏ
∂

∂t
|Ψ(t)⟩ = 1

2m

(
p2x + p2y

)
|Ψ(t)⟩

φpx,py
(x, y) =

1√
2πℏ

ei(pxx+pyy)/ℏ

cpx,py
=

∫ ∞

−∞

∫ ∞

−∞
φ∗
px,py

(x, y)Ψ(x, y)dxdy

|Ψ(t)⟩ =
∑
px

∑
py

cpx,py
e−iEpx,py t/ℏ

∣∣φpx,py

〉
Michigan State University

Society of Physics Students
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