Topology
 from the context of the course
 MTH 461: Metric and Topological Spaces

Kaedon Cleland-Host

December 13, 2022

Contents

1 Fundamentals 2
1.1 Functions 2
1.2 Relations 2
1.3 Order 3
1.4 Cardinality 3
1.4.0 The Cantor Theorem 3
1.5 Topologies 4
1.5.1 Examples of Topologies 4
1.6 Well Ordered Sets 5
1.6.0 Minimal Uncountable Well Ordered Set 5
1.7 Product Topology 5
1.8 Subspace Topology 5
1.9 Interior and Closure 6
1.10 Hausdorff Topologies 6
1.11 Continuity 6
1.11.0 Homeomorphism 6
1.11.0 The Pasting Theorem 7
1.12 Metric Spaces 7
2 Connectedness and Compactness 8
2.1 Product Topology 8
2.2 Connectedness 8
2.2.0 The Intermediate Value Theorem 8
2.3 Linear Continua 9
2.4 Components 9
2.5 Local Connectedness 9
2.6 Compactness 9
2.7 Limit Point Compactness 10
2.8 Local Compactness 10
3 The Fundamental Group 11
3.1 Quotient Maps 11
3.2 Homotopy 11
3.3 Path Composition 11
3.4 The Fundamental Group 12
3.5 Covering Maps 12
3.6 Liftings 12
3.7 Retractions 13

Chapter 1

Fundamentals

1.1 Functions

Definition 1.1.1. A function $f: A \rightarrow B$ is a subset of $X \times Y$ such that $\forall x \in X, \exists$ exactly one element $y \in B,(x, y) \in f$.
Definition 1.1.2. The domain of a function $f: A \rightarrow B$ is $\{a \in A: \exists b \in B$ such that $(a, b) \in f\}$.
Definition 1.1.3. The range of a function $f: A \rightarrow B$ is $\{b \in B: \exists a \in A$ such that $(a, b) \in f\}$.
Definition 1.1.4. A function is a injective denoted $f: A \hookrightarrow B$ iff $f(x)=f(u) \Rightarrow x=y$.
Definition 1.1.5. A function is a surjection denoted $f: A \rightarrow B$ iff the range of f equals B.
Definition 1.1.6. A function is a bijection denoted $f: A \hookrightarrow B$ iff it is both an injection and a surjection.

1.2 Relations

Definition 1.2.1. A relation on a set A is a subset of $A \times A$. Conventionally written $x R y$ rather than $(x, y) \in R$.
Definition 1.2.2. For a relation R on a set A, R is

- Reflexive iff $x A x$ for all $x \in A$
- Antireflexive iff $\nexists x \in A$ such that $x A x$
- Transitive iff $x R y$ and $y R z \Rightarrow x R z$, for any $x, y, z \in A$.
- Symmetric iff $x R y \Leftrightarrow y R x$, for any $x, y \in A$.
- Antisymmetric iff $x R y$ and $y R x \Rightarrow x=y$, for any $x, y \in A$.
- Connex iff for every $x, y \in R$ at least on of $x R y, y R x$, or $x=y$ hold.

Definition 1.2.3. An equivalence relation is a relation that is reflexive, symmetric, and transitive.
Definition 1.2.4. The equivalence class of $a \in A$ for a relation \sim is $[x]:=\{b \in A \mid a \sim b\}$.
Definition 1.2.5. A partition of a set A is a set of subsets X such that $\bigcup X=A$ and $\forall B, C \in X, A \neq B \Rightarrow A \cap B=\emptyset$.
Lemma 1.2.1. Let $x, y \in A$ and \sim be an equivalence class on A, either $[x]=[y]$ or $[x] \cap[y]=\emptyset$.
Corollary 1.2.1.1. Any partition defines and equivalence relation and vice versa.

1.3 Order

Definition 1.3.1. An order on a set A is a relation that is antireflexive, transitive, and connex.
Definition 1.3.2. A partial order on a set A is a relation that is reflexive, antisymmetric, and transitive.
Definition 1.3.3. Two ordered sets have the same order type if there exists a bijection that preserves order.
Definition 1.3.4. Let (X, \leq) be an ordered set, and let $A \subseteq X$.

- The maximum of A is an element $a_{\max } \in A$ such that $\forall a \in A, a \leq a_{\max }$.
- The minimum of A is an element $a_{\text {min }} \in A$ such that $\forall a \in A, a \geq a_{\text {min }}$.
- An upper bound of A is an element $x \in X$ such that $\forall a \in A, a \leq x$.
- An lower bound of A is an element $x \in X$ such that $\forall a \in A, a \geq x$.
- The supremum of A is the least upper bound of A.
- The infimum of A is the greatest lower bound of A.

Definition 1.3.5. An interval on an ordered set $(X,<)$ is

- $(a, b)=\{x \in X: a<x<b\}$ for some $a, b \in X$
- $[a, b)=\{x \in X: a \leq x<b\}$ for some $a, b \in X$
- $(a, b]=\{x \in X: a<x \leq b\}$ for some $a, b \in X$
- $[a, b]=\{x \in X: a \leq x \leq b\}$ for some $a, b \in X$

1.4 Cardinality

Definition 1.4.1. A set A is finite if there exists a bijection $f: A \hookrightarrow\{1,2,3, \ldots, n\}$ for some $n \in \mathbb{N}$.
Definition 1.4.2. The cardinality of a finite set A is $n \in \mathbb{N}$ such that $f: A \hookrightarrow\{1,2,3, \ldots, n\}$ is a bijection.
Theorem 1.4.1. Let A be a finite set with cardinality $n \in \mathbb{N}$ and $B \subsetneq A$ be a proper nonempty subset, then

$$
\begin{gathered}
\nexists \text { a bijection } B \hookrightarrow\{1, \ldots, n\} \\
\exists \text { a bijection } B \hookrightarrow\{1, \ldots, m\} \text { for some } m \in \mathbb{N}
\end{gathered}
$$

Corollary 1.4.1.1. For finite sets A there is no bijection between A and any proper nonempty subset $B \subsetneq A$.
Definition 1.4.3. A set A is countable iff $\exists A \hookrightarrow \mathbb{N}$ or A is finite.
Theorem 1.4.2. Let A be a nonempty set, then the following are equivalent.

- A is countable
- There exists a surjection $g: \mathbb{N} \rightarrow A$.
- There exists an injection $f: A \hookrightarrow \mathbb{N}$.

Corollary 1.4.2.1. Every subset $A \subset \mathbb{N}$ is countable.
Corollary 1.4 .2 .2 . A countable union of countable sets is countable.
Definition 1.4.4. The power set of a set A denoted $P(A)$ is the set of all subsets of A.
Theorem 1.4.3. The Cantor Theorem states that for a nonempty set A there is no injection $f: P(A) \hookrightarrow A$ and no surjection $g: A \rightarrow P(A)$.

1.5 Topologies

Definition 1.5.1. A topology on a set A is a set of subsets $J \subset P(A)$ with the following properties

1. $\emptyset, A \in J$.
2. Any union of elements in J is also in J.
3. Any finite intersection of elements in J is also in J.

Definition 1.5.2. A topological space is a pair (X, \mathcal{T}) sometimes denoted \mathcal{T}_{X} of a set X and a topology \mathcal{T} on X.
Definition 1.5.3. A subset $A \subset X$ is open iff $A \in \mathcal{T}$ where (X, \mathcal{T}) is a topological space.
Definition 1.5.4. A subset $A \subset X$ is closed iff $X-A$ is open.
Definition 1.5.5. A basis is a collection \mathcal{B} of subsets of a set X such that

1. $\forall x \in X, \exists B \in \mathcal{B}$ such that $x \in B$.
2. $\forall B_{1}, B_{2} \in \mathcal{B}$, if $x \in B_{1} \cap B_{2}$, then $\exists B_{3} \in \mathcal{B}$ such that $B_{3} \subseteq B_{1} \cap B_{1}$.

Proposition 1.5.1. Let (X, \mathcal{T}) be a topological space and $\mathcal{C} \subset P(X)$. If $\forall U \in \mathcal{T}, \forall x \in U, \exists D \in \mathcal{C}$ such that $x \in D \subseteq U$, then \mathcal{C} is a basis for \mathcal{T}.

Definition 1.5.6. The topology generated by a basis \mathcal{B} on a set X is

$$
\mathcal{T}=\left\{U \in P(X): U=\bigcap_{B_{i} \in \mathcal{C}} B_{i}, \mathcal{C} \subset \mathcal{B}\right\}
$$

Definition 1.5.7. A subbasis for a topology \mathcal{T} on X is a collection \mathcal{S} of subsets of X such that the collection of all unions and finite intersections of elements in \mathcal{S} is \mathcal{T}.

Definition 1.5.8. The topology generated by a subbasis \mathcal{S} on a set X is the collection of all unions and finite intersections of elements in \mathcal{S}.

Definition 1.5.9. A topology \mathcal{T}^{\prime} is finer than another topology \mathcal{T} iff $\mathcal{T}^{\prime} \subseteq \mathcal{T}$.
Theorem 1.5.1. Let $\mathcal{B}, \mathcal{B}^{\prime} \subset P(X)$ be bases of the topological spaces $(X, \mathcal{T}),\left(X, \mathcal{T}^{\prime}\right)$. The following are equivalent:

1. \mathcal{T}^{\prime} is finer than \mathcal{T}.
2. $\forall x \in X$ and any basis element $B \in \mathcal{B}$ such that $x \in B$ there exists $B^{\prime} \in \mathcal{B}^{\prime}$ such that $x \in B^{\prime} \subseteq B$

Definition 1.5.10. A homeomorphism is a bijection $f: \mathcal{X} \hookrightarrow \mathcal{Y}$ between topologies \mathcal{X} and \mathcal{Y}.
Definition 1.5.11. A topological space (X, \mathcal{T}) is first countable iff $\forall x \in X, \exists$ a countable set $\mathcal{B} \subset \mathcal{T}$ so that for every set $U \in \mathcal{T}$ containing $x, V \subseteq U$ for some $V \in \mathcal{B}$.
Definition 1.5.12. A topology is second countable iff it has a countable basis.

1.5.1 Examples of Topologies

Definition 1.5.13. The discrete topology on a set X is $\mathcal{T}=P(X)$.
Definition 1.5.14. The indiscrete topology on a set X is $\mathcal{T}=\{\emptyset, X\}$.
Definition 1.5.15. The finite compliment topology on a set X is $\mathcal{T}=\{U \subset X: X-U$ is finite $\}$.
Definition 1.5.16. The standard topology on \mathbb{R} is the topology generated by the basis

$$
\mathcal{B}=\{(a, b) \subset \mathbb{R}: a, b \in \mathbb{R}\}
$$

Definition 1.5.17. The lower limit topology on \mathbb{R} denoted \mathbb{R}_{ℓ} is the topology generated by the basis

$$
\mathcal{B}=\{[a, b) \subset \mathbb{R}: a, b \in \mathbb{R}\}
$$

Definition 1.5.18. The upper limit topology on \mathbb{R} is the topology generated by the basis

$$
\mathcal{B}=\{(a, b] \subset \mathbb{R}: a, b \in \mathbb{R}\}
$$

Definition 1.5.19. The K-topology on \mathbb{R} denoted \mathbb{R}_{K} is the topology generated by the basis

$$
\begin{gathered}
\mathcal{B}=\{(a, b) \subset \mathbb{R}: a, b \in \mathbb{R}\} \cap\{(a, b)-K \subset \mathbb{R}: a, b \in \mathbb{R}\} \\
K=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}
\end{gathered}
$$

Definition 1.5.20. The order topology on a ordered set S with more than 1 element is the topology generated by the a basis

$$
\mathcal{B}=\{(a, b) \subset \mathbb{R}: a, b \in \mathbb{R}\} \cap\left\{\left(a, b_{0}\right] \subset \mathbb{R}: a \in \mathbb{R}\right\} \cap\left\{\left[a_{0}, b\right) \subset \mathbb{R}: b \in \mathbb{R}\right\}
$$

where a_{0} is the smallest element and b_{0} is the largest element.

1.6 Well Ordered Sets

Definition 1.6.1. A well ordered set X is an ordered set such that any subset $S \subseteq X$ has a smallest element $s_{0} \in S$ such that $s_{0} \leq s, \forall s \in S$.

Corollary 1.6.0.1. Any finite ordered set is well ordered.
Definition 1.6.2. The section of a well ordered set X by $a \in X$ denoted S_{a} is

$$
S_{a}=\{x \in X: x<a\}
$$

Theorem 1.6.1. Any set A admits a well ordering.
Corollary 1.6.1.1. There exists an uncountable well ordered set.
Theorem 1.6.2. There exists a well ordered set S such that any section is countable S_{Ω} where Ω is the largest element.
Definition 1.6.3. The minimal uncountable well ordered set denoted S_{Ω} is the uncountable well-ordered set such that any section is countable.

Theorem 1.6.3. If $A \subset S_{\Omega}$ is a countable subset of S_{Ω} then A has an upper bound in S_{Ω}.

1.7 Product Topology

Definition 1.7.1. The Product Topology denoted $\mathcal{T} \times \mathcal{T}^{\prime}$ for two topologies $\mathcal{T}, \mathcal{T}^{\prime}$ is the topology generated by the basis

$$
\mathcal{B}=\left\{U \times V: U \in \mathcal{T}, V \in \mathcal{T}^{\prime}\right\}
$$

Theorem 1.7.1. For topologies \mathcal{T} and \mathcal{T}^{\prime} with bases \mathcal{B} and \mathcal{B}^{\prime} the product topology is equivalently generated by the basis

$$
\mathscr{B}=\left\{B \times B^{\prime}: B \in \mathcal{B}, B^{\prime} \in \mathcal{B}^{\prime}\right\}
$$

Definition 1.7.2. The function $\pi_{n}: \prod_{i \in I} X_{i} \rightarrow X_{n}$ is the function mapping $\left(\ldots, x_{n}, \ldots\right) \mapsto x_{n}$.
Theorem 1.7.2. The product topology on $X \times Y$ is the weakest topology such that $\pi^{-1}(U)$ and $\pi^{-1}(V)$ are both open \forall open $U \subset X, V \subset Y$.

Lemma 1.7.3. Let X, Y be topological spaces the set $\{U \times Y: U \in X\} \cap\{X \times V: V \subset Y\}$ is a subbasis for $X \times Y$.

1.8 Subspace Topology

Definition 1.8.1. The subspace topology denoted \mathcal{T}_{Y} for a subset $Y \subset X$ of a topological space (X, \mathcal{T}) is

$$
\mathcal{T}_{Y}=\{Y \cap U: U \in \mathcal{T}\}
$$

Lemma 1.8.1. If \mathcal{B} is a basis for a topological space X and $Y \subset X$ then $\mathcal{B}_{Y}=\{Y \cap B: B \in \mathcal{B}\}$ is a basis for \mathcal{T}_{Y}.
Lemma 1.8.2. For $Y \subset X$ with the subspace topology, if $U \subset Y$ is open in Y and $Y \subset X$ is open in X then U is open in X.
Theorem 1.8.3. Let $A \subset X, B \subset Y$ be topological spaces with subspace topologies, then for $A \times B \subset X \times Y$ the product topology agrees with the subspace topology.

Definition 1.8.2. A subset $Y \subset X$ is convex iff $\forall a, b, c \in Y$, if $a<c<b$ then $c \in Y$.
Theorem 1.8.4. If X be an ordered set with a convex subset $Y \subset X$, then the subspace topology on Y is the order topology on Y.

1.9 Interior and Closure

Definition 1.9.1. For a subset $V \subset X$ of a topological space X the interior of V denoted V^{o} is the largest open set in V or equivalently

$$
V^{o}=\bigcup_{i} U_{i} \quad \forall U_{i} \in V
$$

Definition 1.9.2. For a subset $V \subset X$ of a topological space X the closure of V denoted \bar{V} is the smallest closed set containing V or equivalently

$$
\bar{V}=X-(X-V)^{o}=\bigcap_{j} F_{j} \quad \forall F_{j} \in \mathcal{T} \text { such that } V \subset F_{j}
$$

Lemma 1.9.1. Let $A \subset X$ be a subset of a topological space X, then $x \in \bar{A}$ if and only if every open set containing $x \in X$ intersects A.

Lemma 1.9.2. Let $A \subset X$ be a subset of a topological space X and \mathcal{B} be a basis for X, then $x \in \bar{A}$ if and only if every basis element $B \in \mathcal{B}$ containing $x \in X$ intersects A.

Definition 1.9.3. For a subset $A \subset X$ of a space X, a point $x \in X$ is a limit point or cluster point of A iff for every neighborhood $U \in \mathcal{T}$ of $x, U-\{x\}$ intersects A.
Theorem 1.9.3. Let $A \subset X$ be a subset of a topological space X and A^{\prime} be the set of limit points of A, then $\bar{A}=A \cup A^{\prime}$.

1.10 Hausdorff Topologies

Definition 1.10.1. A topological space X is Hausdorff iff $\forall x, y \in X$ such that $x \neq y$, there exists $U \in \mathcal{T}$ and $V \in \mathcal{T}$ such that $x \in U, y \in V$ and $U \cap V=\emptyset$.

Theorem 1.10.1. Every finite subset of a Hausdorff space is closed.
Definition 1.10 .2 . A sequence in a space X is a series of points $x_{i} \in X$ for $i \in \mathbb{N}$.
Definition 1.10.3. A sequence converges to a point $x \in X$ iff for all open subsets $U \subset X$ such that $x \in U \exists N$ such that for all $n \geq N, x_{n} \in U$.

Proposition 1.10.1. Let $A \subset X$ be a subset of a topological space X. If a sequence $x_{n} \in A$ converges to $x \in A$, then $x \in \bar{A}$.
Theorem 1.10.2. If a space X is Hausdorff, then any sequence $x_{n} \in X$ can only converge to at most one point.

1.11 Continuity

Definition 1.11.1. A function $f: X \rightarrow Y$ is continuous iff for any open subset $V \subset Y$ in the range of $f, f^{-1}(V)$ is open.
Proposition 1.11.1. A function $f: X \rightarrow Y$ is continuous iff for \mathcal{B} basis of $Y, f^{-1}(\mathcal{B})$ is open $\forall B \in \mathcal{B}$.
Theorem 1.11.1. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous under the epsilon delta definition from real analysis, then it is continuous.
Definition 1.11 .2 . A homeomeorphism is a function between spaces that is continuous in both directions.
Theorem 1.11.2. Let $f: X \rightarrow Y$ a function between spaces. The following are equivalent"

- f is continuous.
- $\forall A \subset X, f(\bar{A}) \subset \overline{f(A)}$.
- $\forall B \subset Y$ closed, $f^{-1}(B)$ is closed
- $\forall x \in X$, if $f(x) \in B$ is a neighborhood of $f(x)$ then $f^{-1}(B)$ contains a neighborhood of x.

Theorem 1.11.3. Let X, Y, Z be spaces.

- $f: X \rightarrow Y$ defined by $x \mapsto y$ for some $y \in Y$ and $\forall x \in X$, is continuous.
- For $A \subset X$ with the subspace topology, $j: A \rightarrow X$ defined by $x \mapsto x$ is continuous.
- If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both continuous then $g \circ f=g(f(x))$ is continuous.
- If $f: X \rightarrow Y$ is continuous. For $A \subset X$, the restriction $f_{A}: A \rightarrow Y$ is continuous.
- For $Y \subset Z$ with the subspace topology, if $f: X \rightarrow Y$ is continuous then $f: X \rightarrow Z$ is also continuous.
- The map $f: X \rightarrow Y$, where $X=\bigcup_{\alpha} U_{\alpha}$ for open subsets U_{α} is continuous if and only if $f_{\cup_{\alpha \in A} U_{\alpha}}$ is open for all A.

Theorem 1.11.4. The Pasting Theorem states that for $X=A \cup B$ where $A, B \subset X$ are closed subsets. If $f: A \rightarrow Y$ is continuous, $g: B \rightarrow Y$ is continuous and $f=g$ on $A \cap B$, then $h: X \rightarrow Y$ is continuous where

$$
h(x)=\left\{\begin{array}{ll}
f(x) & x \in A \\
g(x) & x \in B
\end{array}\right\}
$$

Theorem 1.11.5. Let $f: X \rightarrow Y \times Z$ for spaces X, Y, Z where $f(x)=\left(f_{1}(x), f_{2}(x)\right)$. f is continuous iff f_{1}, f_{2} are continuous. Proposition 1.11.2. The functions,$+ \times, /$ are continuous, defined by

$$
\begin{aligned}
+ & : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \quad \text { defined by }(a, b) \mapsto a+b \\
& \times: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \quad \text { defined by }(a, b) \mapsto a b \\
/: & \mathbb{R} \times \mathbb{R}-\{0\} \rightarrow \mathbb{R} \quad \text { defined by }(a, b) \mapsto a / b
\end{aligned}
$$

1.12 Metric Spaces

Definition 1.12.1. A metric space X is a set with a function $d: X \rightarrow \mathbb{R}$ such that $\forall x, y, z \in X$,

- $d(x, y) \geq 0$
- $d(x, y)=0 \Leftrightarrow x=y$
- $d(x, y)=d(y, x)$
- $d(x, y)+d(y, z) \leq d(x, z)$

Definition 1.12.2. The metric ball denoted $B(x, \varepsilon)$ for a point $x \in X$ in a metric space (X, d) and a real number $\varepsilon>0$ is the set

$$
B(x, \varepsilon)=\{y \in X: d(x, y)<\varepsilon\}
$$

Definition 1.12.3. The topology on a metric space is the topology generated by the basis

$$
\mathcal{B}=\{B(x, \varepsilon): x \in X, \varepsilon>0)\}
$$

Definition 1.12.4. A topological space X is metrizable iff \exists a metric on X whose metric topology is that of X.
Theorem 1.12.1. For two metrics (X, d) and $\left(X, d^{\prime}\right)$, the metric topology generated by d^{\prime} is finer than d if and only if $d(x, y) \leq d^{\prime}(x, y)$
Corollary 1.12.1.1. For two metrics (X, d) and $\left(X, d^{\prime}\right)$ with metric topologies \mathcal{T} and \mathcal{T}^{\prime}. \mathcal{T}^{\prime} is finer than \mathcal{T} if and only if for all $x \in X$ and all $\varepsilon>0 \in \mathbb{R}, \exists \delta>0$ such that $B_{d^{\prime}}(x, \delta) \subseteq B_{d}(x, \varepsilon)$
Definition 1.12.5. A subset set $A \subseteq X$ of a metric space X is bounded iff $\exists k>0 \in \mathbb{R}$ so that $d(x, y)<k$ for all $x, y \in A$.
Definition 1.12.6. The diameter of a metric space is $\sup _{x, y \in A} d(x, y)$.
Theorem 1.12.2. Let (X, d) be a metric space, then $\bar{d}: X \times X \rightarrow \mathbb{R}$ defined by $\bar{d}(x, y)=\min \{d(x, y), 1\}$ is a metric that induces the same topology.
Proposition 1.12.1. Let $A \subset X$, where X is a metric $\forall x \in \bar{A}, \exists$ a sequence $x_{n} \in A$ for $n \in \mathbb{N}$ that converges to X.
Theorem 1.12.3. Let X be a metric space and $f: X \rightarrow Y$ a function. f is continuous if and only if $\lim f\left(x_{n}\right)=f(x)$ for all sequences $x_{n} \in X$ that converge to $x \in X$.
Proposition 1.12.2. Every metrizable space is first countable.
Theorem 1.12.4. Let X, Y be spaces and $f: X \rightarrow Y$ a function.
If f is continuous, then for every sequences $x_{n} \in X$ converging to $x \in X, f\left(x_{n}\right)$ converges to $f(x)$.
If X is first countable and for every sequence $x_{n} \in X$ converging to $x \in X, f\left(x_{n}\right)$ converges to $f(x)$, then f is continuous.

Chapter 2

Connectedness and Compactness

2.1 Product Topology

Definition 2.1.1. Let I be an index set, an I-tuple in a set X is a function $x: I \rightarrow X$ denoted $x_{i}=f(i)$ for $i \in I$.
Definition 2.1.2. The Cartesian product $\prod_{i \in I} A_{i}$ for a family of sets $\left\{A_{i}\right\}_{i \in I}$ is the set of $x: J \rightarrow \cup_{i \in I} A_{i}$ where $x(i) \in A_{i}$.
Definition 2.1.3. The box topology on $\prod_{i \in I} X_{i}$ is the topology generated by the basis

$$
\mathcal{B}=\left\{\prod_{i \in I} U_{i}: U_{i} \in \mathcal{T}_{X_{i}}\right\}
$$

Definition 2.1.4. The product topology $S_{\mathcal{B}} \subset P\left(\prod_{i \in I} X_{i}\right)$ is the topology generated by the subbasis

$$
\mathcal{B}=\left\{\prod_{\substack{i \in I \\ i \neq j}} X_{i} \times U_{j}: \text { open } U_{j} \subset X_{j}\right\}
$$

Corollary 2.1.0.1. π_{i} is continuous for a topology \mathcal{T} on $\prod_{i \in I} X_{i}$ iff \mathcal{T} contains the product topology.
Theorem 2.1.1. The product topology is the smallest topology for which π_{i} is continuous for all $i \in I$.
Theorem 2.1.2. \mathbb{R}^{ω} with the product topology is metrizable with the metric $d(\mathbf{x}, \mathbf{y})=\bar{d}\left(x_{1}, y_{1}\right)+\frac{1}{2} \bar{d}\left(x_{2}, y_{2}\right)+\cdots+\frac{1}{n} \bar{d}\left(x_{n}, y_{n}\right)$.

2.2 Connectedness

Definition 2.2.1. A separation of a space X is a pair of disjoint open subsets $U, V \subset X$ such that $X=U \cup V$.
Definition 2.2.2. A space X is connected iff it has no separation.
Definition 2.2.3. A space X is disconnected iff it has a separation.
Definition 2.2.4. A space is path connected iff for any $x, y \in X$, there exists a continuous function $f:[0,1] \rightarrow X$ with $f(0)=x$ and $f(1)=y$.
Theorem 2.2.1. \mathbb{R} is connected and the intervals of \mathbb{R} are connected.
Proposition 2.2.1. Let $X \cong Y . X$ is connected $\Leftrightarrow Y$ is connected.
Theorem 2.2.2. If $f: X \rightarrow Y$ is continuous and X is connected then $f(X)$ is connected.
Definition 2.2.5. A topological space X is homogeneous iff there exists a homeomorphism $f: X \rightarrow X$ such that $f(x)=y, \forall x, y \in X$.
Corollary 2.2.2.1. Let X be a space and $Y \subset X$ be a connected subspace. If $A \cup B=X$ is a separation of X then either $Y \subset A$ or $Y \subset B$.
Theorem 2.2.3. Let $\left\{A_{\alpha}\right\}$ be a collection of connected sets in a space X with $\bigcap_{\alpha} A_{\alpha} \neq 0$ then $\bigcup_{\alpha} A_{\alpha}$ is connected.
Theorem 2.2.4. Let $A \subset X$ be a connected space with the subspace topology on a space X. If $A \subseteq B \subseteq X$ then A is connected with the subsapce topology as a subset of B.
Theorem 2.2.5. The product $X \times Y$ with the product topology of two connected spaces X and Y is connected.
Theorem 2.2.6. The Intermediate Value Theorem states that for a continuous function $f: X \rightarrow Y$ were X is connected and y is ordered, if $a, b \in X, \forall y$ in Y such that $f(a) \leq y \leq f(b)$, there exists $c \in X$ such that $f(c)=y$.

2.3 Linear Continua

Definition 2.3.1. A linear continua is an ordered space L such that the following properties hold

1. L has the least upper bound property
2. $\forall x, y \in L$ such that $x<y, \exists Z$, such that $x<z<y$.

Theorem 2.3.1. A linear continua and intervals of linear continua are connected.

2.4 Components

Definition 2.4.1. The component of x in a space X is the union of all connected subsets $S \subseteq X$ containing x.
Corollary 2.4.0.1. The components of a space are connected and disjoint.
Definition 2.4.2. The path component of x in a space X is the set of points $y \in X$ such that there exists a continuous function $f:[0,1] \rightarrow X$ such that $f(0)=x$ and $f(1)=y$.

Corollary 2.4.0.2. The path components of a space are connected and disjoint.

2.5 Local Connectedness

Definition 2.5.1. A space X is locally connected at $x \in X$ iff for all open neighborhoods $U \subset X$ of $x \in U$, there exists a connected open subset $V \subseteq U$.

Theorem 2.5.1. A space is locally connected iff the components of elements in open sets are open.
Corollary 2.5.1.1. A connected space is locally connected.
Definition 2.5.2. A space X is locally path connected at $x \in X$ iff for all open neighborhoods $U \subset X$ of $x \in U$, there exists a path connected open subset $V \subseteq U$.

Theorem 2.5.2. A space is locally path connected iff the path components of elements in open sets are open.
Corollary 2.5 .2 .1 . A path connected space is locally path connected.
Theorem 2.5.3. If a space is locally path connected, then path components and components are equivalent.

2.6 Compactness

Definition 2.6.1. A cover of a set X is collection of subsets such that the union contains X.
Definition 2.6.2. A sub-cover of a set X is a subset of a cover that is also a cover.
Definition 2.6.3. A space X is compact iff every open cover has a finite sub-cover.
Definition 2.6.4. A space X is sequentially compact iff every sequence has at least one limit point,
Theorem 2.6.1. Closed subsets of compact sets are compact.
Theorem 2.6.2. Compact subset of Hausdorff spaces are closed.
Corollary 2.6.2.1. If a compact Hausdorff space, a subset is compact if and only if it is closed.
Theorem 2.6.3. The image of a compact space under a continuous map is compact.
Corollary 2.6.3.1. Compactness is preserved under homeomorphism.
Theorem 2.6.4. For a continuous bijection $f: X \hookrightarrow Y$, if X is compact and Y is Hausdorff then f is a homeomorphism.
Theorem 2.6.5. The product of two compact spaces is compact.

2.7 Limit Point Compactness

Definition 2.7.1. A space X is limit point compact if every infinite subset has a limit point.
Theorem 2.7.1. Compact spaces are limit point compact.
Corollary 2.7.1.1. Closed intervals of \mathbb{R}^{n} are limit point compact.
Theorem 2.7.2. Let X be a metrizable space, then compactness and limit point compactness are equivalent.

2.8 Local Compactness

Definition 2.8.1. A space X is locally compact at $x \in X$ iff there exists a compact $K \subset X$ with $x \in K$ such that K contains a neighborhood of x.

Corollary 2.8.0.1. A compact space is locally compact.
Corollary 2.8 .0 .2 . \mathbb{R}^{n} is locally compact.
Definition 2.8.2. A 1-point compactification of a space X is a superset $Y \supset X$ such that

- $Y-X$ is a single element.
- Y is compact.

Theorem 2.8.1. A space X is locally compact and Hausdorff if and only if it has a Hausdorff 1-point compactification.
Theorem 2.8.2. If a 1 -point compactification exists it is unique.
Theorem 2.8.3. Let X be a Hausdorff space then X is locally compact if and only if for all open neighborhoods $U \subset X$ of a point $x \in X$, there exists an open neighborhood $V \subset X$ of x such that $V \subset U$ and \bar{V} is compact.

Chapter 3

The Fundamental Group

3.1 Quotient Maps

Definition 3.1.1. A quotient map $f: X \rightarrow Y$ between two spaces X and Y is a continuous map such that $U \subset Y$ is open if and only if $f^{-1}(U) \subset X$ is open.
Definition 3.1.2. The quotient topology of a surjective map $f: X \rightarrow Y$ is the unique topology of Y such that f is a quotient.
Proposition 3.1.1. $f: X \rightarrow Y$ is a quotient if and only if $U \subset Y$ is closed if and only if $f^{-1}(U) \subset X$ is closed.
Theorem 3.1.1. A function $f: X \rightarrow Y$ is continuous if and only if the function from $\bar{f}: X / \sim \rightarrow Y$ defined by $[x] \mapsto f(x)$ and $[x]=\{z \in X: f(z)=f(x)\} \subset X / \sim$ is continuous.

3.2 Homotopy

Definition 3.2.1. Two functions $f_{1}, f_{2}: X \rightarrow Y$ are homotopic iff there exists a function $f: X \times \square \rightarrow Y$ such that $f(x, a)=f_{1}(x)$ and $f(x, b)=f_{2}(x)$.
Definition 3.2.2. Two functions $f_{1}, f_{2} \square \rightarrow X$ with $f_{1}(a)=f_{2}(a)=x_{0}, f_{1}(b)=f_{2}(b)=x_{1}$ are path homotopic iff there exists $f: I \times I t X$ such that $f(x, a)=f_{1}(x), f(x, b)=f_{2}(x), f(a, t)=x_{0}$ and $f(b, t)=x_{1}$ for all $t \in I$.
Corollary 3.2.0.1. If two functions are path homotopic then they are homotopic.
Proposition 3.2.1. Homotopy and path homotopy are equivalence relations.
Definition 3.2.3. The homotopy classes of paths in X from $x_{0} \in X$ to $x_{1} \in X$ denoted $\pi\left(x_{0}, X, x_{1}\right)$ is the equivalency classes of all path homotopic functions from x_{0} to x_{1}.
Theorem 3.2.1. Let $A \subset \mathbb{R}^{n}$ be a convex subset. Two functions $f_{1}, f_{2}: I \rightarrow A$ have the same endpoints if and only if f_{1} and f_{2} are path homotopic.

3.3 Path Composition

Definition 3.3.1. The path composition $f_{1} * f_{2} \in \pi(x, X, z)$ of two paths $f_{1} \subset \pi(x, X, y)$ and $f_{2} \subset \pi(y, X, z)$ is the path defined by pasting two paths together at $f_{1}(1)=f(0)$.
Theorem 3.3.1. There exists a well defined mapping $f: \pi\left(x_{1}, X, x_{2}\right) \times \pi\left(x_{2}, X, x_{3}\right) \rightarrow \pi\left(x_{1}, X, x_{3}\right)$.
Definition 3.3.2. The identity path denoted e_{x} for a point $x \in X$ is the path $e_{x}: I \rightarrow X$ such that $e_{x}(t)=x$ for all $t \in I$.
Definition 3.3.3. The inverse path denoted $\bar{f} \in \pi(y, X, x)$ of a path $f \in \pi(x, X, y)$ is the path $\bar{f}=(f * z)$ where $z: I \rightarrow I$ is defined by $t \mapsto b-t$.
Theorem 3.3.2. Path composition of homotopy classes have the following properties for any three path homotopy classes $\gamma_{1}=\pi\left(x_{1}, X, x_{2}\right), \gamma_{2}=\pi\left(x_{2}, X, x_{3}\right), \gamma_{3}=\pi\left(x_{3}, X, x_{4}\right)$

1. $\gamma_{3} *\left(\gamma_{2} * \gamma_{1}\right)=\left(\gamma_{3} * \gamma_{2}\right) * \gamma_{1}$.
2. $\overline{\gamma_{1}} * \gamma_{1} \cong e_{x_{1}}$ and $\gamma_{1} * \overline{\gamma_{1}} \cong e_{x_{2}}$.
3. $\gamma_{1} * e_{x_{1}}=\gamma_{1}$ and $e_{x_{2}} * \gamma_{1}=\gamma_{1}$.

3.4 The Fundamental Group

Definition 3.4.1. The fundamental group denoted $\pi_{1}\left(X, x_{0}\right)$ for a space X and a point $x_{0} \in X$ is the group of path homotopy classes of loops based at x_{0} equipped with path composition.

Proposition 3.4.1. The fundamental group is a group.
Theorem 3.4.1. Let $f: X \rightarrow Y$ be a homeomorphism then $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right)$ is an isomorphism.
Corollary 3.4.1.1. The fundamental group is isomorphic under homeomorphism.
Definition 3.4.2. The base translation isomorphism \hat{f} for a path $f: I \rightarrow X$ in X from $f(0)=x_{0} \in X$ to $f(1)=x_{1} \in X$ is a map $\hat{f}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi\left(X, x_{1}\right)$ defined by

$$
\hat{f}([g])=[\bar{f}] *[g] *[f]
$$

Theorem 3.4.2. The base translation isomorphism is an isomorphism.
Corollary 3.4.2.1. If a space X is path-connected, then the fundemental group does not depend on choice of base point, $\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(X, x_{1}\right), \forall x_{0}, x_{1} \in X$.

3.5 Covering Maps

Definition 3.5.1. An open set $U \subseteq X$ is evenly covered by a continuous subjective map $p: E \rightarrow X$ iff $p^{-1}(U)$ is a disjoint union of open sets $p^{-1}(U)=\bigcup_{\alpha} V_{\alpha}$ so that p restricted to each V_{α} is a homeomorphism.
Definition 3.5.2. A covering map is continuous subjective map $p: E \rightarrow X$ such that a neighborhood around every point is evenly covered.

Theorem 3.5.1. Let $p: E \rightarrow X$ be covering map and $X_{0} \subset X$ a subspace with the subspace topology, then $\left.p\right|_{p^{-1}\left(X_{0}\right)}$ a covering map of X_{0}.
Theorem 3.5.2. Let $p: E \rightarrow X$ and $p^{\prime}: E^{\prime} \rightarrow X^{\prime}$ be covering maps, then $p \times p^{\prime}: E \times E^{\prime} \rightarrow X \times X^{\prime}$ is a covering map.

3.6 Liftings

Definition 3.6.1. The lifting \tilde{f} of two continuous maps $f: I \rightarrow X$ and $p: E \rightarrow X$ is a continuous map $\tilde{f}: I \rightarrow E$ such that $p \tilde{f}=f$.

Theorem 3.6.1. Let $f: I \rightarrow X$ be a continuous map and $p: E \rightarrow X$ be a covering map with $e_{0} \in p^{-1}\left(x_{0}\right)$ for $x_{0}=f(0)$, then there exists a unique lifting $\tilde{f}: I \rightarrow E$ so that $\tilde{f}(0)=e_{0}$.

Proposition 3.6.1. Let $f: I \times I \rightarrow X$ be a continuous map and $p: E \rightarrow X$ be a covering map with $e_{0} \in p^{-1}\left(x_{0}\right)$ for $x_{0}=f(0)$, then there exists a unique lifting $\tilde{f}: I \times I \rightarrow E$ so that $\tilde{f}(0,0)=e_{0}$.

Theorem 3.6.2. Let $p: E \rightarrow X$ be a covering map where $p\left(e_{0}\right)=x_{0} \in X$. For any two homotopic paths $f, g: I \rightarrow X$, the liftings \tilde{f} and \tilde{g} with endpoint e_{0} are homotopic.

Definition 3.6.2. The lifting correspondence Φ for a covering $\operatorname{map}_{\tilde{f}} p: E \rightarrow X$ is a mapping $\Phi: \pi_{1}\left(X, x_{0}\right) \rightarrow p^{-1}(b)$ is defined for $[f] \in \pi_{1}\left(X, x_{0}\right)$ with a unique homotopy class of liftings $\tilde{f}: I \rightarrow E$ such that $\Phi(f)=\tilde{f}(1)$.

Definition 3.6.3. A topological space is simply connected if it has the fundamental group $\{1\}$ for all base points.
Corollary 3 .6.2.1. A convex space is simply connected.
Theorem 3.6.3. Let $p: E \rightarrow B$ be a covering map, and let $p\left(e_{0}\right)=x_{0}$. If E is path connected then the lifting correspondence is surjective. If E is simply connected, then it is bijective.
Theorem 3.6.4. For a covering map $p: E \rightarrow B$ and base point $p\left(e_{0}\right)=x_{0} \in X$.

1. The induced map $p_{*} \pi_{1}\left(E, e_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is injective.
2. The lifting correspondence induces an injective map $\theta: \pi_{1}\left(X, x_{0}\right) / \pi_{1}\left(E, e_{0}\right) \top^{-1}\left(x_{0}\right)$, which is bijective if E is path connected.
3. If f is a loop in X based at x_{0}, then $[f] \in \pi_{1}\left(E, e_{0}\right)$ if and only if f lifts to a loop in E based at e_{0}.

3.7 Retractions

Definition 3.7.1. A retraction of X onto a subset $A \subseteq X$ is a continuous map $r: X \rightarrow A$ so that $\left.r\right|_{A}$ is the identity.
Definition 3.7.2. A subset $A \subseteq X$ is a retract of X iff there exists a retraction of X onto A.
Proposition 3.7.1. If A is a retract of X, then the induced homomorphism of fundamental groups is injective.
Theorem 3.7.1. There is no retraction of B^{2} onto S^{1}.
Definition 3.7.3. A path $h: I \rightarrow X$ is null homotopic iff it is homotopic to a constant map.
Theorem 3.7.2. Let $j: S^{1} \rightarrow X$ be a continuous map, then the following are equivalent:

- h is null homotopic.
- h extends to a map $k: B^{2} \rightarrow X$.
- The induced homomorphism of fundamental groups is the zero map.

Theorem 3.7.3. The Bauer fixed point theorem states that if $f: B^{n} \rightarrow B^{n}$ is a continuous map between open balls, then there exists a point $x \in B^{n}$ such that $f(x)=x$.
"At least if you believe in calculus."
"I hope that homework didn't kill anyone too much."
"It's like set theory, but actually interesting!"
"If you want to make class more interesting just replace 'bases' with Al-Qaeda."
"If you're trapped in the U-ball, you're screwed!"
"It's in all these weird languages that nobody should be speaking with too many consonants."
"Hmm, maybe"
"The inverse function theorem is basically the reason the world works."
"That has nothing to do with this... although it may."
"Whenever an arbitrary collection is involved, you are at risk of set theory."
"I'm going on strike because things cost too much in France."
"No-one remembers the green zone."
"Once you've obtained mathematical adulthood, you have to know this example."
"I'm going to regret erasing this, but then I get to have fun drawing it again!"
"This proof is not moral."
"If your theorems are wrong change your definitions so your theorems are right!"
"Then he became a philosopher, which is very sad."

